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Pervaporation-induced growth of materials
The pervaporation-induced flow convects the solutes or the parti-
cles contained in the reservoirs up to the formation and growth of
a dense material, see Fig. 1c (left) in the main text. Two limiting
cases may arise depending on the chemical nature of the solutes.

For a dilute colloidal dispersion, the growing material is a
porous packed bed of colloids through which water flows and can
thus pervaporate, see Fig. S1. The pervaporation-induced flow
thus still obeys eqn (1), and the incoming flux of colloids remains
constant: φ0v0 = −φ0L0/τe, φ0 being the volume fraction of col-
loids in the reservoir. Solute conservation then implies that the
growth of the material follows:

φd ẋd ≈−φ0v0 , (S1)

i.e. a constant growth rate owing to the constant incoming flux
of colloids (φd is the volume fraction of the packed bed). Actu-
ally, the above conservation equation is only an approximation of
a non-linear relation which takes into account the shape of the
concentration profile upstream of the material1. Deviations are
however only significant at early time scales and/or for large φ0,
see Fig. S1a.

For an aqueous molecular solution (surfactants, polymers,
etc.), the increase of the solute concentration at the tip of the
channel decreases the chemical activity of water, and thus slows
down the driving force for pervaporation across the membrane2.
In this case, concentration increases up to the formation of a dry
material (φ → 1) which does not contribute anymore to the per-
vaporation process, see Fig. S1b. The dry material therefore shifts
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the pervaporation-induced flow which now follows:

v(x) =−qe(x− xd)/(hw) =−(x− xd)/τe . (S2)

The incoming flux of solutes decreases as the material invades
the channel, see Fig. S1b. Solute conservation in this case is
ẋd ≈ −φ0v0(1− xd/L0), leading to a growth which slows down
exponentially:

xd/L0 ≈ 1− exp(−φ0(t− τn)/τe) . (S3)

τn corresponds to the induction time of the dry material and is
given by the complete resolution of the concentration dynamics3.

The above two regimes were reported experimentally for var-
ious systems even with quantitative agreements with eqns (S1)
and (S3)1,4. The agreement is only semi-quantitative for disper-
sions of small nanoparticles (radii < 50 nm) and polymer inks,
because the solidification of the solution/dispersion within the
channels deforms significantly the PDMS matrix5,6. In this case,
the growth dynamics follow nevertheless either a linear growth
eqn (S1) or an exponential slowdown eqn (S3), but with empiri-
cal parameters to account for the deformations3.

Microfabrication
Master templates– To combine both push-down valves and a static
herringbone mixer, we use standard protocols7 to fabricate mas-
ter templates with rounded channels at the level of the inlets and
rectangular channels everywhere else, see the SEM image shown
in Fig. 1c in the main text. Two-level rectangular channels are ob-
tained using standard aligment processes and the successive pho-
topatterning of negative photoresists (SU-8 3025 and SU-8 3005,
MicroChem). Rounded channels are obtained using a positive
photoresist (AZ 40 XT, AZ Electronic Materials) which is melted

Journal Name, [year], [vol.], 1–3 | 1

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2016



0 1xd/L0

φ

ξ

1 v0

0

v(
x
)

0 50 150
0

1

x
d
/
L
0

t/τe

0 1xd/L0

φ

ξ

φd
v0

0

v(
x
)

0 30
0

1

x
d
/
L
0

t/τe

xd

v0

(1-xd/L0)v0

(a)

(b)

Fig. S1 (a) Growth of a packed bed of colloids. Left: concentration
profile (red, front width ξ ) and pervaporation-induced flow (blue). Right:
growth dynamics xd vs. t given by eqn (S1) (dotted line). The continuous
line is the full theoretical prediction of ref. 1 for φ0 = 0.02 and φd = 0.64.
(b) Growth of a dry material. Pervaporation ceases within the material
and the incoming flux decreases. Left: concentration profile (red) and
pervaporation-induced flow shifted by the growing material, see eqn (S2)
(blue). Right: growth dynamics xd vs. t given by eqn (S3) for φ0 = 0.02.

and reflowed by heating after photopatterning. The heights of
the channels were measured using a surface profiler (Dektak,
Veeco): H = 25 µm, h = 35 µm, and h0 = 10 µm see Fig. 1c in
the main text, and the widths of the channels are w = 100 µm
and W = 300 µm (after reflow).

The control channels and the channels for the flow of dry air
were fabricated using a SU-8 master template of height 60 µm
(see the real design displayed in Fig. S2). The width of the control
channels is 300 µm and 600 µm for the channels overlapping the
pervaporation channels.

Multilayer soft lithography– A thin PDMS layer (Sylgard 184,
Dow Corning, thickness 50 µm) is spin-coated on the first mold
containing the fluidic channels and left to reticulate at high tem-
perature (65◦C, 45 min). A thick PDMS layer is poured onto the
second master (control channels) and after complete reticulation,
this elastomeric stamp is aligned and bounded on the PDMS mem-
brane deposited on the first mold (plasma cleaning, Diener Elec-
tronic). The whole PDMS device is then carefully peeled off the
template, punched to create access holes, and bounded on a glass
slide previously spin-coated by a thin PDMS layer (≈ 50 µm).

air out

air in

inlet 1

inlet 2

inlet 3

valve 1

valve 2

valve 3

w

L0

Fig. S2 Real microfluidic design of the chip shown schematically in
Fig. 1 in the main text. The reservoirs (3 in the present case) are
connected to 10 parallel pervaporation channels and are controlled by
three independent valves. The zoom evidences the staggered
herringbone mixer upstream of the pervaporation area. The
approximate dimensions of the chip are 3.5×1.5 cm2 and 6 identical
units were made on a single 4" wafer using lithography.

Movies

Movie BarCode.avi – Movie corresponding to the experiment re-
ported in fig. 4a in the main text. Channel width w = 100 µm.
Time interval between two successive frames ∆t = 125 s. The
blinking at low frequency is due to slow temporal modulations
of the mercury lamp.

Movie ContinuousGradient.avi – Movie corresponding to the ex-
periment reported in fig. 4b in the main text. Channel width w =

100 µm. Time interval between two successive frames ∆t = 250 s.
The blinking at low frequency is due to slow temporal modula-
tions of the mercury lamp.

Calculation of r(t) for polymeric materials

For polymer solutions, the pervaporation-induced flow leads to
the growth of a dry material which does not contribute anymore
to pervaporation (see Fig. S1). The pervaporation-induced flow is
thus shifted upstream of the material, and the growth dynamics
follows an exponential slowing down, see eqns. (S2) and (S3).
Despite this slowing down, it is always possible to calculate the
trajectory xt(t, t0) of a thin stripe of liquid emerging from the
valves at t = t0, knowing both v(x, t) and the growth dynamics
xd(t). More precisely, we solved the following ordinary differen-
tial equation (Matlab):

dxt

dt
= v(xt , t), (S4)
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with

v(xt) =−(xt − xd)/τe for xt < L0 (S5)

xd(t)/L0 = 1− exp(−(t− τn)/τg) . (S6)

τn and τg are both parameters estimated by fitting the experi-
mental growth dynamics, see Fig. 5b in the main text. In the
case of the exact geometry of the chip depicted Fig. 1 above,
trajectories xt(t, t0) were calculated for the central pervapora-
tion channel only, and we took into account the transit from
the valves up to the pervaporation area using a constant ve-
locity v(x) = (L0 − xd)/τe for xt > L0 over a length l/10, with l
the geometrical distance between the valves and the entrance
of the channel (the factor 10 comes from the 10 times increase
of the pervaporation-induced flow rate in the upstream fluidic
channel connected to the 10 parallel pervaporation channels).
The initial condition of this ordinary differential equation is thus
xt(t0, t0) = L0 + l/10.

Knowledge of the trajectories xt(t, t0) enables us to relate the
positions xt(t → ∞, t0) within the dry material to the times t0 at
which the corresponding liquid stripes emerge from the valves.

Finally, the same relation is used to relate the expected continu-
ous gradient r(x) along the dry material to the temporal evolution
r(t0) of the ratio of opening of valves A and B, with x= xt(t→∞, t0)
calculated as above, see Fig. 5 in the main text.
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