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Coordinate transformation of the Maxwell’s Fisheye lens
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Figure S1: Light propagation in (a) circular fisheye lens and (b) rectangular optofluidic 

lens.

Two-step coordinate transformations are conducted to transform the circular 

fisheye lens into a rectangular optofluidic lens. The index relationship between the two 

lenses is expressed as [1],
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where z = x + i·y is the complex number that represents the complex coordinate systems, 

ncircle is the index profile of the circular fisheye lens shown in Eq. (1), and k is a function 

related to the geometry of the rectangle. It can be numerically proven that k is approaching 

zero if the height of the rectangle is much larger than the width. Therefore, Eq. (S1) can be 

simplified as,
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where n0 is the highest index value, α is a constant related to lens geometry. Figure S1(a) 

and (b) illustrate the light propagation in the circular fisheye lens and the rectangular 

optofluidic lens. 

Maximum divergence angle of optofluidic lens
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Figure S2: The spatial relationship between (a) the circular fisheye lens and (b) the 

optofluidic lens. (c - d) Schematic illustration of the light propagation in the two lenses 

with index approximation.

(d)

The ideal index profile of the optofluidic lens is a hyperbolic secant profile ranging 

from 0 to n0/2. However, the index of liquid medium generally ranges from 1.332 to 1.5. 

As a result, the top and bottom regions of the rectangular lens (white region) have to be 

discarded as shown in Figure S2(a). Based on the relationship of the two coordinate 

systems, the discarded region corresponds to the two pole regions of the circle in Figure 

S2(b). When the incident angle of light beams is sufficiently large to make the light beam 
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reach the discarded regions, the light cannot be focused anymore as illustrated in Figure 

S2(c-d). Therefore, the index approximation reduces the maximum divergence angle. The 

spatial relationship indicates that higher index contrast is favored to reduce the discarded 

regions and hence to achieve a larger maximum divergence angle.

Optofluidic lens with different widths

Figure S3: (a) Ray tracing simulation of light beams with different channel widths. (b) 

Simulated focal length as a function of channel widths with the core/cladding ratio of 2.25.
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Ray tracing results

Figure S4: Ray tracing simulation of light beams with different divergence angles in the 

(a) optofluidic GRIN lens and (b) optofluidic lens. 
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Figure S5: Ray tracing simulation of light beams with different off-center positions in the 

(a) optofluidic GRIN lens and (b) optofluidic lens. 
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Refractive index measurement

Figure S6: Pixel intensity as a function of the mass fraction of ethylene glycol.

Fluorescent dye (Rhodamine 6G, Concentration: ~10-6 g/mL) is added into pure 

ethylene glycol. The ethylene glycol is mixed with deionized water to obtain 20%, 40%, 

60% and 80% ethylene glycol solutions. Then, the solutions are applied into the 

microchannel for pixel intensity quantification. The pixel intensity is linearly proportional 

to the mass fraction of the ethylene glycol as shown in Figure S6. The percentage of 

nonlinearity can be expressed as [3],

,   (S3)
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
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which is 6% based on the experimental data. The nonlinearity is mainly induced by the 

nonlinearity of the CCD camera and the experimental errors during solution preparation. 

Like majority of chemicals, the refractive index of ethylene glycol is also linearly 

proportional to its mass fraction. Therefore, we can infer that the refractive index is in a 

linear relationship with the captured pixel intensity.

The index profile in the mixing chamber and the optofluidic chamber is measured 

as shown in Figure S8. It illustrates that the discrete refractive indices evolve into a 
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continuous hyperbolic secant profile in the mixing chamber. Subsequently, the refractive 

index profile keeps invariant in the optofluidic chamber due to the high flow rates. 

(a) (b)

Figure S7: (a) Fluorescent image of index profile at different positions. (b) Measured 

refractive index at x1, x2 and x3, respectively.

Beam Profile of Laser Light

Figure S8: Captured image of the beam profile from the single-mode fiber.

The light beam profile emitted from a single mode fiber is measured using a beam 

profiler (SP503U, Ophir-spiricon). Figure S6 shows that the light beam (distance to fiber 

tip: 31.2 mm) follows a Gaussian beam profile and the beam divergence angle is measured 

as 12.13 degrees. 
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Calculation of Spherical Aberration

Figure S9: Schematic illustration of spherical aberration measurement.

As shown in Figure S9, spherical aberration δ is defined as the distance between 

the paraxial focus (green dot) and the peripheral focus (red dot). The best focal point (black 

spot) is the position with the maximum light intensity. The distance between the best focal 

point and paraxial focus is proportional to the spherical aberration δ as [4],

                                                      (S4)l  

where α is 0.75 in this case. To calculate the spherical aberration, the focal length of the 

paraxial rays is estimated as the y-intersection of the focal position curve in Figure 5(f). 

The focal length of the best focal point is the measured by plotting the intensity profile 

along the optical axis and finding the position with maximum intensity.
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