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Figure S1: (a) Velocity and (b) signal amplitude (cube root of the impedancemag-
nitude, 7 µmdiameter beads) as a funcƟon of the parƟcle posiƟon in the channel
cross-secƟon.
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Figure S2: SimulaƟon results (7 µm diameter beads). (a) ParƟcle verƟcal posiƟon
vs signal amplitude (cube root of the impedance magnitude). (b) ParƟcle verƟcal
posiƟon vs dimensionless raƟo ∆xOBQ/∆xTSV (see definiƟon in Figure 2 of main
text). The plot of ∆xOBQ/∆xTSV (equivalent to ∆tOBQ/∆tTSV) vs signal amplitude
is shown in Figure 3 of main text.
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Figure S3: SimulaƟon results (7 µm diameter beads, 30 µm electrode width, vari-
able channel heighth). Normalized verƟcal posiƟon (z/h) versus signal amplitude
(cube root of the impedancemagnitude) normalized by signal amplitude relevant
to centered bead (z = 0).
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Figure S4: Finite element geometric model of the microfluidic device. A typical
mesh is shown.

Finite element model
The device is modeled as the union of two homogeneous conducƟng regions Ω1 and

Ω2, represenƟng the bead and the suspending fluid, respecƟvely. Their complex conduc-
ƟviƟes σ∗

1 and σ∗
2 are given by σ∗

k = σk + iωεkεo, k = 1, 2, where εo is the permiƫvity
of free space, and σk and εk are the conducƟvity and relaƟve permiƫvity of the media,
respecƟvely; ω denotes the circular frequency, and i is the imaginary unit. ConƟnuity of
electric potenƟal and normal current flux density is enforced at the bead surface Γ. The
boundary of the domain is divided into an insulaƟng part (∂Ωne), and a part covered by
electrodes (∂Ωe) which generate the electric field.

In the Fourier domain, the electrical problem is stated as follows:

− div(σ∗∇Ψ) = 0 , in Ω1 ∪ Ω2 ; (1)
[[σ∗∇Ψ · n]] = 0 , on Γ ; (2)

[[Ψ]] = 0 , on Γ , (3)

whereΨ is the electric potenƟal phasor, σ∗ = σ∗
k in Ωk, k = 1, 2, div and∇ respecƟvely
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Table S1: Electric parameters adopted for bead, electrodes, and extracellular fluid
σ1 (S/m) ε1 Ce (mF/m2) σ2 (S/m) ε2

6.6×10−4 2.5 144 1.6 80

denote the divergence and gradient operators, [[·]] is the jump of the enclosed quanƟty
across Γ, and n denotes the outer unit normal vector. An insulaƟng boundary condiƟon
is applied on the boundaries not covered by electrodes

σ∗∇Ψ · n = 0 , on ∂Ωne . (4)

On the i-th electrode (∂Ωei ), the following electrode equaƟon holds

Ye(Ψi −Ψ) = σ∗∇Ψ · n , on ∂Ωei , (5)

where Ye = Ge + iωCe is the double-layer admiƩance per unit area, expressed in terms
of conductance Ge and capacitance Ce per unit area, and Ψi is the electrode potenƟal.
In the radio-frequency range,Ge is usually negligible with respect to ωCe.

Problem (1)–(5) is recast into the following weak formulaƟon∫
Ω1∪Ω2

σ∗∇Ψ · ∇Φ dV +
∑
i

∫
∂Ωei

YeΨΦ dA =
∑
i

∫
∂Ωei

YeΨiΦ dA , (6)

where Φ is an arbitrary test funcƟon. EquaƟon (6) is solved using the commercial finite
element code COMSOL Multyphysics. In parƟcular, Weak Form PDE Physics are adopted
for the bead and fluid contribuƟons, whereas the electrode terms are treated as Weak
contribuƟons on the relevant boundaries. QuadraƟc Lagrangian tetrahedral elements are
used to interpolate the electric potenƟalΨ.

Figure S4 shows the geometric model of the microfluidic chip (36 µmwide× 45 µm
high, with 30 µm wide electrodes and 10 µm spacing), along with a typical tetrahedral
mesh. Parameter values in the simulaƟons are shown in Table S1. A signal of 4 V at
1 MHz was applied to two top electrodes and the resulƟng currents through the boƩom
electrodes were calculated.
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