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Figure S1: (a) Velocity and (b) signal amplitude (cube root of the impedancemag-
nitude, 7 µmdiameter beads) as a func on of the par cle posi on in the channel
cross-sec on.
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Figure S2: Simula on results (7 µm diameter beads). (a) Par cle ver cal posi on
vs signal amplitude (cube root of the impedance magnitude). (b) Par cle ver cal
posi on vs dimensionless ra o ∆xOBQ/∆xTSV (see defini on in Figure 2 of main
text). The plot of ∆xOBQ/∆xTSV (equivalent to ∆tOBQ/∆tTSV) vs signal amplitude
is shown in Figure 3 of main text.
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Figure S3: Simula on results (7 µm diameter beads, 30 µm electrode width, vari-
able channel heighth). Normalized ver cal posi on (z/h) versus signal amplitude
(cube root of the impedancemagnitude) normalized by signal amplitude relevant
to centered bead (z = 0).
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Figure S4: Finite element geometric model of the microfluidic device. A typical
mesh is shown.

Finite element model
The device is modeled as the union of two homogeneous conduc ng regions Ω1 and

Ω2, represen ng the bead and the suspending fluid, respec vely. Their complex conduc-
vi es σ∗

1 and σ∗
2 are given by σ∗

k = σk + iωεkεo, k = 1, 2, where εo is the permi vity
of free space, and σk and εk are the conduc vity and rela ve permi vity of the media,
respec vely; ω denotes the circular frequency, and i is the imaginary unit. Con nuity of
electric poten al and normal current flux density is enforced at the bead surface Γ. The
boundary of the domain is divided into an insula ng part (∂Ωne), and a part covered by
electrodes (∂Ωe) which generate the electric field.

In the Fourier domain, the electrical problem is stated as follows:

− div(σ∗∇Ψ) = 0 , in Ω1 ∪ Ω2 ; (1)
[[σ∗∇Ψ · n]] = 0 , on Γ ; (2)

[[Ψ]] = 0 , on Γ , (3)

whereΨ is the electric poten al phasor, σ∗ = σ∗
k in Ωk, k = 1, 2, div and∇ respec vely
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Table S1: Electric parameters adopted for bead, electrodes, and extracellular fluid
σ1 (S/m) ε1 Ce (mF/m2) σ2 (S/m) ε2

6.6×10−4 2.5 144 1.6 80

denote the divergence and gradient operators, [[·]] is the jump of the enclosed quan ty
across Γ, and n denotes the outer unit normal vector. An insula ng boundary condi on
is applied on the boundaries not covered by electrodes

σ∗∇Ψ · n = 0 , on ∂Ωne . (4)

On the i-th electrode (∂Ωei ), the following electrode equa on holds

Ye(Ψi −Ψ) = σ∗∇Ψ · n , on ∂Ωei , (5)

where Ye = Ge + iωCe is the double-layer admi ance per unit area, expressed in terms
of conductance Ge and capacitance Ce per unit area, and Ψi is the electrode poten al.
In the radio-frequency range,Ge is usually negligible with respect to ωCe.

Problem (1)–(5) is recast into the following weak formula on∫
Ω1∪Ω2

σ∗∇Ψ · ∇Φ dV +
∑
i

∫
∂Ωei

YeΨΦ dA =
∑
i

∫
∂Ωei

YeΨiΦ dA , (6)

where Φ is an arbitrary test func on. Equa on (6) is solved using the commercial finite
element code COMSOL Multyphysics. In par cular, Weak Form PDE Physics are adopted
for the bead and fluid contribu ons, whereas the electrode terms are treated as Weak
contribu ons on the relevant boundaries. Quadra c Lagrangian tetrahedral elements are
used to interpolate the electric poten alΨ.

Figure S4 shows the geometric model of the microfluidic chip (36 µmwide× 45 µm
high, with 30 µm wide electrodes and 10 µm spacing), along with a typical tetrahedral
mesh. Parameter values in the simula ons are shown in Table S1. A signal of 4 V at
1 MHz was applied to two top electrodes and the resul ng currents through the bo om
electrodes were calculated.
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