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Appendix A: Further notes on AC-DEP

The net dielectric force, resulting from transient polarization of cells12 and the electric field147 �⃗�𝐷𝐸𝑃 
is given by

,  �⃗�𝐷𝐸𝑃 = 2𝜋𝑟3𝜖𝑚𝛼∇𝐸2 (1)

where the particle radius is ‘r’, ‘εm’ is the medium permittivity, ‘ ’ is the applied electric field, and ‘α’ �⃗�
is the real part of the Clausius-Mossotti factor, which is the effective polarizability of the particle 
relative to the suspending medium and is frequency dependent.

𝛼 = 𝑅𝑒[𝐾(𝜔)] (2)

𝐾(𝜔) =
𝜀 ∗

𝑝 ‒ 𝜀 ∗
𝑚

𝜀 ∗
𝑝 + 2𝜀 ∗

𝑚
(3)

𝜀 ∗ = 𝜀 ‒ (𝑖𝜎
𝜔) (4)

where, ε* denotes complex permittivity and the subscript ‘p’ refers to a lossless dielectric sphere particle 
suspended in a medium ‘m’. The complex permittivity ε* is given by eqn. 4, which is a function of 
permittivity, ε, medium electrical conductivity, σ, and the angular frequency, ω12, 147. 

The transient polarization of particles results in their movement in the electric field that scales 
between two extremes depending on the exciting AC frequency. Herbert Pohl, in his seminal text 
“Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields” defined these two 
phenomenological extremes as positive dielectrophoresis and negative dielectrophoresis12. These two 
cases arise because of the polarizability of a uniform composition particle being greater or lesser than 
the polarizability of the medium in which it is suspended. If the real part of the effective polarizability, 
Re[α] of the particle is greater than that of the medium, then the electric field lines pass through the 
particle causing a polarization, which is slightly skewed due to the spatially varying electric field lines. 
A resultant force directs the particle to high field density regions and this observed movement is known 
as ‘positive dielectrophoresis’ (pDEP). If the effective polarizability, Re[α] of the particle is less than 
that of the medium in which it is suspended, spatially non-uniform electric field lines divert around the 
outside of the particle causing ion depletion at the particle poles and subsequent polarization. The 
resulting force directs the particle to the low field density regions and this is termed ‘negative 
dielectrophoresis’ (nDEP) 12, 57. 

Appendix B: Further notes on DC-DEP

The observed cell motion in iDEP devices depends on two forces: electrokinetics (EK) and 
dielectrophoresis (DEP).

�⃗� ∝ �⃗�𝐸𝐾 + �⃗�𝐷𝐸𝑃 (5)

where is the particle flux, the electrokinetic velocity (expressed as the sum of electrophoretic  �⃗� �⃗�𝐸𝐾 

 and electro-osmotic  velocities) and  the dielectrophoretic velocity of the particle. �⃗�𝐸𝑃 �⃗�𝐸𝑂 �⃗�𝐷𝐸𝑃

Electrokinetic velocity can be expressed as the sum of electro-osmotic and electrophoretic mobilities:

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2016



2

                                                                                                                          �⃗�𝐸𝐾 = 𝜇𝐸𝐾�⃗� = (𝜇𝐸𝑃 + 𝜇𝐸𝑂)�⃗� (6)

where is the electrokinetic mobility, electrophoretic mobility, electro-osmotic mobility 𝜇𝐸𝐾 𝜇𝐸𝑃 𝜇𝐸𝑂 

and applied electric field to create non-uniformities in the channel. Neglecting the frequency �⃗� 
component for strict DC-iDEP, the CM factor in eqn. 3 is modified to:

𝛼 =
𝜎𝑝 ‒ 𝜎𝑚

𝜎𝑝 + 2𝜎𝑚
(7)

where is the conductivity of the particle,  the conductivity of the medium. This simplification is 𝜎𝑝 𝜎𝑚

substituted into eqn. 1 yielding38, 148

�⃗�𝐷𝐸𝑃 =
1
2

𝑉
𝜎𝑝 ‒ 𝜎𝑚

𝜎𝑝 + 2𝜎𝑚
𝜀𝑚∇�⃗�2  (8)

where V the volume of the particle,  permittivity of the medium, and the magnitude of the applied 𝜀𝑚 �⃗� 
DC electric field. 

From eqn. 7, if the conductivity of the particle is greater than the medium, the CM factor gives 
positive values and the dielectrophoretic force on the particle pushes the particle towards high field 
density regions thus trapping them i.e. the particle gets attracted towards insulating obstacle region 
whereas, if the conductivity of the particle is less than that of the medium, the particles are repelled 
from the high field density regions thus yielding in negative values of CM factor and movement of 
particles in the fluid streamlines i.e. particles are repelled from the insulating obstacle regions. The 
conductivity of the particle (σp) is given as a function of surface conductivity and bulk conductivity149:

𝜎𝑝 = 𝜎𝑏 +
2𝐾𝑠

𝑟
 (9)

where σb, the bulk conductivity, Ks is the surface conductance and ‘r’ the radius of the particle. 
Due to the electrodes placed in the large reservoirs at the channel inlet and outlet ports, they often 

cause re-dilution of the concentrated samples with some Joule heating and bubble formation45. To 
mitigate these effects, a simple, robust device was designed where in the electrodes are not in direct 
contact with the sample. This technique is referred to as contactless dielectrophoresis (cDEP) wherein 
the electric field is generated by placing the electrodes in two conductive microchambers separated by 
thin insulating barriers from the main channel20. cDEP is particularly well-suited for manipulating 
sensitive biological particles46.

Appendix C: Further notes on shell models

Electric polarization is an important factor in DEP operations and has been found to depend 
inversely on the frequency of the applied field. It is described as a function of dielectric properties of 
the cell and the suspending medium as given by eqn. 1051, 55, 56. 

𝜀 ∗
𝑚𝑖𝑥 = 𝜀 ∗

𝑚
(2𝜀 ∗

𝑚 + 𝜀 ∗
𝑐𝑒𝑙𝑙) ‒ 2𝑝(𝜀 ∗

𝑚 ‒ 𝜀 ∗
𝑐𝑒𝑙𝑙)

(2𝜀 ∗
𝑚 + 𝜀 ∗

𝑐𝑒𝑙𝑙) + 𝑝(𝜀 ∗
𝑚 ‒ 𝜀 ∗

𝑐𝑒𝑙𝑙)
(10)

where p is the cell’s volume fraction, and ε* is the complex dielectric permittivity defined by eqn. 
4. The indices mix, cell, and m refer to the whole mixture, cell, and the suspending medium. Eqn. 10 
holds good until the particle is not perturbed by the neighboring particles55

For single-shell model, the dielectric constant εp
* can be obtained by 51, 58,
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𝜀 ∗
𝑝 = 𝜀 ∗

𝑚𝑒𝑚
(1 + 2𝑉𝑚)𝜀 ∗

𝑐𝑝 + 2(1 ‒ 𝑉𝑚)𝜀 ∗
𝑚𝑒𝑚

(1 ‒ 𝑉𝑚)𝜀 ∗
𝑐𝑝 + (2 + 𝑉𝑚)𝜀 ∗

𝑚𝑒𝑚

 
(11)

where Vm= (1-dmem/R)3, R the outer cell radius and dmem the shell thickness. This equation allows 
calculating frequency dependency on conductivity and permittivity of cell from its phase parameters58.

In double-shell model, the effective complex permittivity of the whole cell is expressed as 

𝜀 ∗
𝑝 = 𝜀 ∗

𝑚𝑒𝑚

2(1 ‒ 𝑉1) + (1 + 2𝑉1)𝐸1

(2 + 𝑉1) + (1 ‒ 𝑉1)𝐸1

 
(12)

where V1=(1-dmem/R)3, R the outer cell radius and dmem is the plasma membrane thickness and E1 is 
given by 

𝐸1 =
𝜀 ∗

𝑐𝑝

𝜀 ∗
𝑚𝑒𝑚

2(1 ‒ 𝑉2) + (1 + 2𝑉2)𝐸2

(2 + 𝑉2) + (1 ‒ 𝑉2)𝐸2

 
(13)

where V2=(Rn/(R-dmem))3, Rn the outer radius of nucleus, indices cp and mem refers to cytoplasm and 
cell membrane respectively, and E3 is given by 

𝐸2 =
𝜀 ∗

𝑛𝑒

𝜀 ∗
𝑐𝑝

2(1 ‒ 𝑉3) + (1 + 2𝑉3)𝐸3

(2 + 𝑉3) + (1 ‒ 𝑉3)𝐸3

 
(14)

where V3=(1-dne/Rn)3, dne is the nuclear envelope thickness, index ne refers to nuclear envelope, and 

the ratio of complex permittivities of nucleoplasm and nuclear envelope51, 55. 
𝐸3 =

𝜀 ∗
𝑛𝑝

𝜀 ∗
𝑛𝑒

In an ellipsoid cells with a major axis aL and minor axis a1, the Clausius-Mossotti factor is given 
by62, 150:

𝑓𝐶𝑀,𝑖 =
𝜀 ∗

𝑝 ‒ 𝜀 ∗
𝑚

3[𝜀 ∗
𝑚 + (𝜀 ∗

𝑝 ‒ 𝜀 ∗
𝑚)𝐿𝑖]

 
(15)

where  is the complex permittivity of the particle and Li the depolarization factor.  and  are 𝜀 ∗
𝑝 𝐿𝑖  𝜀 ∗

𝑝  
further given as,

   

𝜀 ∗
𝑝 =

𝜀 ∗
𝑚𝑒𝑚𝜀 ∗

𝑐𝑝

𝑑𝑚
𝑅𝜀 ∗

𝑚𝑒𝑚𝜀 ∗
𝑐𝑝

 
(16)

𝐿𝑖 =
𝑎1𝑎2

𝐿

2

∞

∫
0

1

(𝑙 + 𝑅2)( (𝑙 + 𝑎2
𝐿)(𝑙 + 𝑎2

1)2
𝑑𝑙 (17)

where l is the integration variable and R represents either major axis aL or minor axis, a1. 
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