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1. Mathematical model of lateral indentation of the cell membrane 

An elastic model of the cellular membrane is developed to calculate the mechanical stimulus induced on the cell 

membrane by the magnetic domain wall tweezers. Let us now consider the mathematical problem of determining the 

cell deformation under the action of a distributed load imposed by the cluster of beads. Since the observed overall 

displacement in experiments is small compared to the cell diameter, the external forces are mainly counterbalanced by 

the bending of the cell membrane, which is considered as a linear elastic shell of thickness h, with Young modulus E 

and Poisson ratio ν. Accordingly, the cell membrane has a bending stiffness ܭ௕ ൌ
ா௛య

ଵଶሺଵିఔሻ
 and a stretching stiffness 

ݏܭ ൌ  This assumption is valid if we consider a range of applied forces much bigger that the rupture load of a focal .݄ܧ

adhesion with the substrate, which is in the order of 30 pN [M. Sun, J. Graham, B. Heged, F. Marga, Y. Zhang, G. 

Forgacs, and M. Grandbois. biophysical journal, 89(6):4320:4329, 2005.]. 

Considering a Cartesian coordinate system ሺx, yሻ	for describing the material position of the doubly-curved cell 

membrane, its local principal radii of curvature are indicated by ߩఈ ൌ ,ݔఈሺߩ with α	ሻݕ ൌ ሺx, yሻ.	Applying an indentation 

distributed pressure ݌ ൌ ;ݔሺ݌  ሻ in the z-direction (see Figure S1), the linearized equilibrium equations using the theoryݕ	

of thin shallow shells read [E. Ventsel and T. Krauthammer. CRC press, 2001.]: 
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where ׏ଶ	is the Laplacian operator,	׏௚ଶൌ
ሺ.ሻ,ೣೣ
ఘೣ

൅
ሺ.ሻ,೤೤
ఘ೤

 is the Vlasov operator, comma denotes partial derivative, 

 ߱ ൌ ߱ሺݔ, ߶ ሻ is the vertical shell displacement, andݕ ൌ ߶ሺݔ,  ሻ is the Airy stress function, whose derivatives yield theݕ

planar stresses. Eqs.(1,2) are valid within the limit ɛ ൌ
௛

ோ
≪ 1, with ܴ ൌ ݉݅݊ሾρ୶;   and represent a system of partial	௬ሿ,ߩ

differential equations whose solution is strongly affected by the shell geometry. Such a geometric dependence can be 

highlighted by considering the dimensionless variables, ഥ߱ ൌ
ఠ	௄್
௉	ோమ

	 and ߶ത ൌ
థ	௄್
௉	ோయ

		where P is the characteristic intensity 

of the force exerted by the beads. Accordingly, combing the Equation S1 and Equation S2, we get: 
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where we considered dimensionless operators over the coordinates ̅ݔ = x/R and ݕത = y/R, dropping the bars for the sake 

of simplicity. Eq.(3) is a singularly perturbed linear partial differential equation which is valid far enough from the 

indenting region. Since ߳ is a very small parameter, the leading order solutions for the far-field displacements depends 
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primarily on the Gaussian curvature of the cell surface [A. Vaziri and L. Mahadevan. Proceedings of the National 

Academy of Sciences, 105(23):7913,7918, 2008.]. 

The complete solution could be derived by imposing the matching between this far-field solution and the one found 

with asymptotic expansion around the indentation area. Nonetheless, since the cell membrane is a doubly curved 

surface with positive Gaussian curvature everywhere, Equation S3 is governed by the elliptic operator ߘ௚ଶ at the leading 

order, that is the corresponding solution is concentrated around the indentation area and decays quickly away from it. In 

such a case, the shell easily buckles, eventually reaching a partly inverted shape around the indentation area, as well 

known from classical studies on spherical caps [D. Vella, A. Ajdari, A. Vaziri, and A. Boudaoud. Physical review 

letters, 109(14):144302, 2012.]. Therefore, the large deflections (i.e. with respect to h, being of the order R) of the cell 

membrane under the indentation pressure exerted by the beads' cluster will be calculated by searching for an elastic 

solution within the constraint of isometric transformations. The shape of the cell membrane in proximity of the first 

contact point C with the cluster can be approximated by the osculating ellipsoidal paraboloid, having the expression: 

 

                                                                                                                                          (S4) 

 

where the (x,y) plane is tangent to C having directions coinciding with the principal direction of the surface, locally 

characterized by curvature radii Rx and Ry. If 2δ is the large indentation provoked by the cluster, we assume that the 

deformed shape of the cell membrane will be given by reversing the shape of the paraboloid with respect to the 

plane at z = δ, producing a mirror-buckling with a boundary ellipse having semi-axes ݏ௫ ൌ ඥ2ܴߜ௫ and ݏ௬ ൌ ඥ2ܴߜ௬. 

Let us now calculate the resulting indentation value using a variational approach. After lengthy manipulations, the total 

deformation energy U of the shell in such a buckled configuration results: 
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where c = 1.15 is a constant obtained by minimizing a certain displacement functional under a nonholonomic constraint 

[A. Pogorelov. American Mathematical Soc., 72, 1988.]. The work L of external forces is instead given by: 
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for a concentrated force Fc, or: 

 

                                                                                                                                             (S7) 

 

for a pressure P distributed over z≤hp, with an elliptic boundary having semi-axes ܽ ൌ ඥ2ߜ௉ܴ௫ and b=ඥ2݄௣ܴ௬, 

corresponding to a distributed indentation force 	ܨௗ ൌ  . ௉ܲඥܴ௫ܴ௬ߜ2

Accordingly, the analytic relation between load and indentation can be found by minimizing the elastic functional  

W = U - L, being: 
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where  β = δp /δ < 1 indicates the portion of the free boundary where the pressure is applied. 

The latter equation is exploited to estimate the mechanical stimulus exerted on target cells, using the parameters carried 

out by the experiments and from the referenced works, as reported in the main text. 

 

Figure S1: Sketch of the analytical surface used to model the cell membrane geometry, in proximity to the position 

where the mechanical load is applied, producing an indentation of 2δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
















yx
d RR

h
Ec

F
11

)2(2

)2(

)1(12

3 2/1
2/5

24/3 







2. Measurement of beads magnetic susceptibility via Vibrating Sample Magnetometer (VSM) 

As discussed in the main text, the magnetic susceptibility of the superparamagnetic particles used during the 

experiments (MyOne-Dynabeads, 1 µm diameter) is modeled according to the Langevin function (see Equation 2), to 

properly calculate the point-by-point magnetization on the bead volume.  

The parameters ߯଴ (linear susceptibility) and Ms (Magnetization of saturation) in Equation 2 are experimentally 

determined by a Vibrating Sample Magnetometer (VSM) measurement of the beads magnetic moment, as a function of 

the applied magnetic field. The measurement is performed on beads in suspension. The total magnetic moment is 

normalized to the number of beads and divided by the single bead volume, obtaining the magnetization of a single 

particle, displayed in Figure S2. The experimental data are then fitted with the Langevin function (red line in Figure 

S2); from this fitting procedure ߯଴ ൌ1.46 ± 0.02 and Ms = 34.9 ± 0.2 KA/m is obtained. The uncertainty is due to the 

fitting standard error. 

 

Figure S2: Magnetization (M) of a 1µm MyOne Dynabead as function of the applied magnetic field (HA) measured 

(black line) by VSM. The experimental data are fitted with a Langevin function (red line, see Equation 2 in the main 

text).   

 

 

 

 

 

 

 

 

 

 

 

 



3. Forces on a magnetic bead in solution 

A magnetic bead suspended in a liquid in proximity to magnetic ring-shaped conduits experiments several forces, as 

shown in Figure S3: the magnetic force (FM), the viscous friction (FD), gravity (FG) and the buoyancy force (FB). The 

expression for the magnetic force (FM) is reported in Equation 1.  

As a matter of fact, FM is the leading contribution and all the other forces can be neglected when one considers the 

stimulus applied on target cells during the experiments. 

In order to confirm this assumption, we calculate the entity of such forces. The viscous friction exerted on a bead by the 

surrounding fluid is described by the Stokes equation [M. Monticelli, E. Albisetti, D. Petti, D. Conca, M. Falcone, P. 

Sharma and R. Bertacco, J. Appl. Phys., 117, 17B317, 2015.]: 
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where v is the bead velocity with respect to the fluid, η the medium viscosity and RB the bead radius. Considering a 1µm 

bead manipulated in PBS (η≈10-3 Pa·s) with a typical velocity of 10 µm/s, FD = 86 fN, which is negligible compared to 

FM which is on the order of hundreds of pN (see Figure 2). 

Along the vertical direction, the total force due to the gravity and the buoyancy force is given by: 
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where Vb is the bead volume, ρb is the mass density of the bead, ρf is the mass density of the surrounding medium and 

meff. is the effective mass of a body in a fluid. On a 1 µm MyOne dynabead (meff.= 9.42*10-16 kg), the force exerted by 

gravity and buoyancy force is equal to 9.25 fN, much smaller than FM. Moreover, a bead in a fluid is affected by the 

Brownian motion, due to the thermal energy of the surrounding media. Nevertheless, as discussed in the main text, also 

this contribution is negligible because the thermal energy is much lower than the magnetic potential energy well 

generated by DWTs  

 

Figure S3: Simplified scheme of the four main forces acting on a magnetic bead suspended in a fluid 
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4. Magnetic beads manipulation to the cellular membrane of living cells 

Domain Wall Tweezers (DWTs) technology was intensively tested to prove the effectiveness of beads manipulation in 

about 70 cells/mm2 and were let grown in Dulbecco’s modified Eagle’s medium (DMEM)/F12 (Biowest) supplemented 

with 10% fetal bovine serum (FSB) (Lonza) and 2% L-glutamine (Biowest). Once attached to the chip, cells were 

placed under the microscope and magnetic beads were added to the colture medium.different cell culture environments 

and for different dimensions (radius and width) of the magnetic rings. In addition to the HeLa cells reported in the main 

text, mouse mammary tumor cells (4T1) were also tested, as illustrated in Figure S4 where 6 frames from a video (see 

SM1.avi) show the manipulation of a single 1 µm MyOne-Dynabead hitting the cellular membrane. 

4T1 cells were plated onto the chip at a density of  

 

Figure S4: Frames from a video showing the manipulation of 1 µm bead to the cellular membrane of a target 4T1 cell. 

The ring-shaped magnetic conduits in Ni80Fe20 are 300 nm wide, 30 nm thick, with a radius of 5 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Algorithm for tracking the beads centre 

A particle tracking algorithm was developed to precisely determine the magnetic bead position from the acquired 

optical images.  

In the brightfield images, beads appear as bright spots surrounded by a darker ring as can be clearly evinced by 

Figure S5a. The image was first inverted and the pixel values rescaled in the interval [0,1]. The contrast between the 

rings and the background is then enhanced by multiplying by 5 the pixel which value exceeds 0.9. This operation is in 

principle equivalent to a simple thresholding, but it leaves a faint background as reference. Finally, the image is 

convolved with an 11 x 11 pixels mask, resembling the beads airy disk. This matrix is generated by the algebraic sum of 

three Gaussian curves: 

 

,ሺ݅ݔ݅ݎݐܽ݉ ݆ሻ ൌ ݌ݔ2.5݁ ቀെ
ሺ௜ି଺ሻమାሺ௝ି଺ሻమ

ଶ∗ହ
ቁ െ ݌ݔ2݁ ቀെ

ሺ௜ି଺ሻమାሺ௝ି଺ሻమ

ଶ∗ଶ
ቁ െ ݌ݔ݁ ቀെ

ሺ௜ି଺ሻమାሺ௝ି଺ሻమ

ଶ∗ଵ଴
ቁ                                      (S14) 

 

where the standard deviation of each Gaussian, as well as the multiplying factor, is manually tuned to reproduce bead 

airy dish shape. The image intensity is then once again rescaled to the interval [0,1] for clarity. 

After the algorithm application, the centre of each bead appears as a bright red spot with a diameter of 1-2 pixels, as 

illustrated in Figure S5b.  

However, the particles centre and, in general, its position can be determined by visual inspection with a precision close 

to a single pixel.  

Note that, the particles centre and, in general, its position can be determined by visual inspection with a precision close 

to a single pixel. For a pixel size of 120 nm, which is the case of the images reported in Figure 3, the accuracy in the 

determination of the beads position from our algorithm is in perfect agreement with the one carried out by a direct 

inspection of the optical images. 

 

Figure S5: a Optical microscope image of a ring shaped conduit where some magnetic beads are attracted. b Image 

elaborated by a centroid tracking algorithm which allows to determine the particles centre with a precision of 1-2 pixels. 


