1	Electronic Supplementary Information								
2 3									
4	Biomimetic Spinning of Silk Fibers and in situ Cell Encapsulation								
6									
/ 8	Jie Cheng, Doyeun Park, Yesl Jun, Jaeseo Lee, Jinho Hyun*, and Sang-Hoon Lee*								
9 10									
11									
12 13	Table S1-S2								
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									

6 Fig. S1 Natural spinning process inside a *B. mori* duct. SF micelle globules were elongated and
7 entangled each other under the combined action of the physical shearing force and mechanical
8 stretching.

Fig.S2 Photographic and optical images show that phase separation occurred upon mixing of SF and
various polysaccharides. a) Agarose/SF blend. b) CMC/SF blend. c) Dextran/SF blend. d) Chitosan/SF
blend. The insets in (c and d) were the enlarged images. Scale bars: 200µm (a,b,c,d) and 25µm (insets
in c and d).

1 Table S1 Comparison of polysaccharides possible to induce phase-separation of silk fibroin.

-
1
-

			Biocompatibility	Biodegradability (mechanism)	Mechanical property	Process to prepare hydrogel	Possibility of in situ cell encapsulation		
	Alginate ^{[1,} 2] Chitosan ^{[2,} 3] Agarose ^[4]		Good	Good (Enzymatic)	Weak	Neutral condition/ionic crosslinking	Yes		
			Good	Good (Enzymatic)	Weak	Acidic condition /ionic-chemical crosslinking	Possible, but need to modify polymer chain		
			Good	Good (not clear)	Weak	Neutral condition /heating-cooling crosslinking	Possible, but difficult		
	Dex	tran ^[5]	Good	Good (Enzymatic)	Weak	Neutral condition /chemical crosslinking	Possible, but need to modify polymer chain		
	Carl meth cellu	boxy ^[6] hyl ulose	Good	Good (Enzymatic)	Strong	Neutral condition /chemical crosslinking	Possible, but need to modify polymer chain		
3	[1] .	J. L. Drur	y, D. J. Mooney, B	iomaterials 2003,	24, 4337.				
4	[2] I	K. Y. Lee, D. J. Mooney, Chemical Reviews 2001, 101, 1869.							
5	[3] .	J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, R. Gurny, European Journal of							
6	I	Pharmaceutics and Biopharmaceutics 2004, 57, 19.							
7	[4]	P. J. Emans, L. W. van Rhijn, T. J. M. Welting, A. Cremers, N. Wijnands, F. Spaapen, J. W.							
8	Ň	Voncken, V. P. Shastri, Proceedings of the National Academy of Sciences 2010, 107, 3418; R. L.							
9	I	Mauck, X. Yuan, R. S. Tuan, Osteoarthritis and Cartilage 2006, 14, 179.							
10	[5] I	K. T. Nguyen, J. L. West, Biomaterials 2002, 23, 4307; Y. Liu, M. B. Chan-Park, Biomaterials							
11	-	2009, 30, 196.							
12	[6]	C. Chang, L. Zhang, Carbohydrate Polymers 2011, 84, 40.							
13 14 15									

Fig. S3 Fiber stretching by winding on the spool.

- 18
 19
 20
 21
 22
 23
 24
 25
 26
 27

1 Table S2 Fabrication parameters for microfibers.

Fiber code	Weight ratio (SF/alginate)	Flow conditions (ml/h)		Crosslinking	Continuous	Stretchable	Continuous SE only
Tiber code		Sheath	Core	method	fiber	fiber	fiber
Alginate	1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	No
SF1.25 /A1	1.25/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	No
SF3.5/A1	3.5/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	No
SF8/A1	8/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	No
SF10/A1	10/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	No
SF15/A1	15/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	Yes
SF30/A1	30/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	Yes	Yes
SF50/A1	50/1	30, 50,100	0.6, 1.2, 1.8	CaCl ₂ (3%, wt%)	Yes	No	Yes

5 Fig S4. Viscosities of SF (5%) and alginate (5%) measured using a Brookfield viscometer.

Fig. S5 Snap shots of microscopic images showing that pure alginate fiber rapidly degraded after addition of sodium citrate, on the other hand, SF15/A1 fiber remained intact.

- 6 7 8 9

- 12
- Fig. S6 Live/Dead stain of cells in SF1.25/A1 fibers after 7 and 12 days. Scale bars: 100 µm.

- 17