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S.1 Full derivation of the species balance equation described in the Materials and Methods 

section entitled “Derivation of species balance equation used to calculate kr,b and kf,b” 

Let us first consider binding of free target molecules in the bulk suspension to individual 

antibody binding sites on probes in the bulk suspension, where the probe has n number of 

antibodies on its surface. We treat each antibody binding site as being distinguishable so that there 

are separate probe concentrations for each binding permutation represented by Pb[symbols] where the 

symbols within the brackets denote the unique sites that are occupied. For example, Pb[α,β] 

represents the concentration of probe with binding sites α and β occupied by target molecules. 

Figure S1 illustrates an example scenario where the probe has 4 available binding sites. Note that 

we model the two binding sites of each antibody by treating each binding site as an independent 

interaction and assuming no cooperativity in binding (a standard assumption with antibody 

binding). 

 



 

Figure S1. Schematic of bulk probe binding to bulk target. The schematic depicts the binding between a bulk probe 

(Pb) with 4 antibody binding sites (i.e., n=2 antibodies bound) to bulk target (Tb). Each antibody binding site is 

distinguishable by location, thus demonstrating the 16 possible binding permutations (Pb[symbols]) for this example. Each 

binding interaction is governed by the rate constants kr,b and kf,b. The summation of the probe species with a given 

number of bound targets is represented as Pbj, where j is the number of bound targets. Note that this schematic depicts 

probes with 4 antibody binding sites for the purpose of clarity; however, the probes used during the experimental 

procedures had 8 antibody binding sites. 

 

 Each transition from one unique bound state to another can be described by expressions of 

rates of formation (Eq. (1)) and disappearance (Eq. (2)): 

  (1) 
k f ,bPb symbols[ ]Tb



  (2) 

where Pb[symbols] is the molar concentration of the unique probe species that is undergoing the 

transition, Tb is the molar concentration of target in the bulk suspension, and kf,b and kr,b are the 

forward and reverse binding rate constants, respectively.  

We assume each antibody site has equal binding affinity for the target. This allows us to 

treat each unique probe species with a given amount of bound target as having equal 

concentrations, which will be denoted as Pb[j] where j is the total number of target molecules bound 

to the antibody sites, and j ranges from 0 to 2n. For example, Pb[α,β,γ,], Pb[α,β,δ], Pb[α,γ,δ], and Pb[β,γ,δ] 

have equal concentration values, and each of these concentrations is represented as Pb[3]. The rate 

of change of any given unique probe species Pb[j] is a summation of the rates of formation and 

disappearance for its transitions between the other unique probe species, which can be 

mathematically represented as follows: 

  (3) 

where j is the number of bound antibody sites, (2n-j) is the number of available antibody sites after 

j sites are bound, n is the total number of antibodies per probe, Pb[j], Pb[j-1], and Pb[j+1] are the molar 

concentrations of unique probe species with j, j-1, and j+1 number of targets bound, respectively, 

and Tb is the molar concentration of target in the bulk solution.  

 Considering that the concentration of each unique probe species Pb[j] is equal to each other 

for a given number of bound targets j (e.g., Pb[α,β,γ,] = Pb[α,β,δ] = Pb[α,γ,δ] = Pb[β,γ,δ] = Pb[3]), the 

summation of all the Pb[j] values for a given j can be mathematically described by multiplying by 

the number of binding permutations: 

kr ,bPb symbols[ ]

dPb j[ ]
dt

= jk f ,bPb j−1[ ]Tb − jkr ,bPb j[ ] − 2n − j( )k f ,bPb j[ ]Tb + 2n − j( )kr ,bPb j+1[ ]



  (4) 

where Pbj is the sum of all Pb[j] species concentrations for a given j value, i.e., the cumulative 

concentration for each j value. The total number of permutations is equal to the total number of 

bound states with the same energy, i.e., the degeneracy, and it is equal to the binomial coefficient 

of 2n choose j. Using Eq. (4), several equations can be developed for the unique probe species 

Pb[j], Pb[j-1], and Pb[j+1] to describe them in terms of their corresponding cumulative concentrations 

Pbj, Pbj-1, and Pbj+1, respectively: 

  (5) 

  (6) 

  (7) 

Equation (3) can now be written in terms of the cumulative concentrations by substituting in Eqs. 

(5), (6), and (7) to yield: 

 

 

  

  (8) 
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We can now derive the rate of change for the cumulative concentration of probe for a given number 

of bound targets j by taking the derivative of Eq. (4) with respect to time and substituting in Eq. 

(8). After simplifying, the equation is given by: 

  (9) 

which holds true when (1≤j≤2n-1). The j=0 and j=2n expressions cannot be represented by the 

above equation as they represent completely unbound probe and completely bound probe, 

respectively. Specifically, the rates of change for bound target values of j=0 and j=2n can be 

written as: 

  (10) 

  (11) 

 To experimentally determine the rate constants, radiolabeled Tf is used to quantify the 

change in molar concentration of total target bound to the antibody binding sites at varying points 

in time. This measurement can be described mathematically as a summation of the rates of change 

of the cumulative probe species concentrations from Eqs. (9), (10), and (11), multiplied by their 

respective number of targets bound j: 

 

  (12) 

Equation (12) can be simplified to: 

dPbj
dt

= 2n − j −1( )( )k f ,bTbPbj−1 − jkr ,bPbj − 2n − j( )k f ,bTbPbj + j +1( )kr ,bPbj+1

dPb
dt

= −2nk f ,bTbPb + kr ,bPb1

dPb2n
dt

= k f ,bTbPb2n−1 − 2nkr ,bPb2n

d jPbj
j=0
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= 2n k f ,bTbPb2n−1 − 2nkr ,bPb2n( )+ 0 −2nk f ,bTbPb + kr ,bPb1( )+

j 2n − j −1( )( )k f ,bTbPbj−1 − jkr ,bPbj − 2n − j( )k f ,bTbPbj + j +1( )kr ,bPbj+1( )( )
j=1

2n−1

∑



  (13) 

The first summation on the right-hand side of Eq. (13) represents the total molar concentration of 

antibody binding sites (available and bound) within the solution, which we will denote as A0. The 

remaining summations in Eq. (13) represent the total molar concentration of bound antibody 

binding sites within the suspension, which we will denote as B. Making these notation 

substitutions, Eq. (13) is given by: 

  (14) 

Equation (14) can be used to calculate the binding rate constants for our specific experimental 

designs. 

 

 

S.2 Validating constant bulk probe assumption (Pb = Pb,0) over varying volumetric flow 

rates used in the calculation of kf,s 

 

S.2.1 Materials and Methods 

 DGNPs and LFA membranes were setup as described in the Materials and Methods section 

of the main manuscript. To vary the volumetric flow rate during DGNP binding, solutions of gold 

buffer, which did not contain DGNPs, were initially flowed along the test strip for varying 

durations of time (0, 1, and 3 minutes) before the LFA test strips were switched to a gold buffer 

suspension containing DGNPs. DGNP binding was quantified using methods described in the 

manuscript. 
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The average volumetric flow rate (µL/min) for each condition was determined by dividing 

the volume of the DGNP solution by the length of time that it took the DGNP solution to flow up 

the LFA test strip.  

 

S.2.2 Results 

We see from the data (Table S1) that over the range of volumetric flow rates tested, the total 

percentage of DGNPs bound to the test line remains low, which indicates that the constant bulk 

probe concentration assumption is valid over the range of volumetric flow rates tested. 

 

Table S1. Validating constant probe assumption. Quantification of the percentage of DGNPs 

that bound to the test line over varying average volumetric flow rates. 

 


