Supplementary Information

Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer

Floris T.G. van den Brink,^a Tina Wigger,^{bc} Liwei Ma,^a Mathieu Odijk,^{a*} Wouter Olthuis,^a Uwe Karst^{bc} and Albert van den Berg^a

^a BIOS – Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands

^b Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany

^c NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Germany

* E-mail: m.odijk@utwente.nl

	1-OHP MV	+GSH	+LGA	+Hb
Mass range (m/z)	100-600	100-1200	300-3000	300-3000
Nebulizer gas pressure (bar)	0.8	0.8	1.8	1.8
Dry gas flow rate (L/min)	4	4	8	8
Dry gas heater temperature (°C)	180	180	190	180
Capillary voltage (V)	4000	4500	4000	4000
Endplate offset voltage (V)	-500	-500	-300	-300
Capillary exit voltage (V)	120	150	150	180
Skimmer 1 voltage (V)	40	50	50	60
Skimmer 2 voltage (V)	24.6	24	22.5	22
Hexapole 1 voltage (V)	26.7	25	25	23
Hexapole 2 voltage (V)	21	20	20	21
Hexapole RF voltage (Vpp)	60	400	450	500
Lens transfer time (µs)	49	52	60	70
Pre-pulse storage time	1	15	30	30
Lens 1 storage voltage (V)	40	40	40	40
Lens 1 extraction voltage (V)	21.1	20	20	21.1
Lens 2 voltage (V)	7.4	7.4	7.4	7.4
Lens 3 voltage (V)	22	22	22	22
Lens 4 voltage (V)	0.3	0.3	0.3	0.3
Lens 5 voltage (V)	-27.5	-27.5	-27.5	-27.5

Table S1: Settings and operating conditions of the Time-of-Flight mass spectrometer.

Figure S2: Numerical simulation results of the gradient rotation mixer (obtained using COMSOL v5.1). A: 3D plot of the mixer (including spatial dimensions in μ m and coordinate system) containing slices with concentration profiles across the mixer, showing the gradient to be stretched out inside the two mixing chambers. *Insets*: cross-sectional view of the concentration profiles in the three 10 x 10 μ m² 'necks'. Note that in IIIb and IVb the color scale is adjusted to allow visualization of the profiles. The arrows represent *x* and *z* components of the flow velocity field. For this simulation, a mixing efficiency of 99% is calculated using eqn 4 in the main text. B: Concentration distribution at the center of the mixer. Along the red line, the concentration is averaged over the channel depth and plotted as a function of position for diffusion coefficient $D=1.0 \cdot 10^{-09}$ m² s⁻¹ and total flow rates of 1 and 2 μ L min⁻¹. In these traces and plots, a different concentration profile can be observed compared to Fig. 3 in the main text: the alternative combination of parameters (higher *D*, lower *Q*) results in reduced rotation of the concentration gradient as a result of reduced advection and more rapid diffusion.

Figure S3: The potential window of the BDD electrodes was determined off-chip in a 0.1 M KNO₃/10 mM phosphate buffer solution (pH 7.4). A micro-structured BDD WE (4.8 mm²) was compared to a platinum WE (2.5 mm²) in a macroscopic (regular) electrochemical cell with a platinum CE and a KCl saturated Ag/AgCl RE. Cyclic voltammograms recorded at 100 mV s⁻¹ with both WEs show that the BDD electrode has a mainly featureless CV over a potential range of -2 to 2.2 V, providing a potential window of 4.2 V, while this is only 2.6 V for platinum due to the onset of water electrolysis. Adapted with permission from reference 44. Copyright 2016 American Chemical Society.