Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2016

Supplementary Material for Random Design of Microfluidics

Junchao Wang¹, Philip Brisk², and William H. Grover¹

¹Department of Bioengineering ²Department of Computer Science and Engineering Bourns College of Engineering University of California, Riverside

Role of diffusion constant in chip behavior

To determine whether solutes with different diffusion coefficients still behave as predicted in our randomly-designed microfluidic chips, we simulated each of the 10,513 random chip designs using three different model solutes: Na⁺ (representative of ions), fluorescein (representative of small molecules), and bovine serum albumin (BSA; representative of proteins). The simulation results from all three solutes are summarized in Supplementary Figure 1. The similarity of the results from each solute confirm that our library of randomly-designed chips can be used to predict the behavior of a wide range of different solutes from ions to proteins.

Supplementary Figure 1: Fluid velocity vs. concentration for each outlet in each of the 10,513 chip designs in our simulation library, using the diffusion coefficients of three different solutes: Na⁺ ($1.33 \times 10^{-9} \text{ m}^2/\text{s}$), fluorescein ($4.25 \times 10^{-10} \text{ m}^2/\text{s}$), and bovine serum albumin (BSA; $6.38 \times 10^{-11} \text{ m}^2/\text{s}$). Each solute behaves similarly in each chip design, meaning that our randomly-designed chips will still function as predicted regardless of the specific solute used.