The importance of travelling wave components in standing surface acoustic wave (SSAW) systems[†]

CITSABEHSAN DEVENDRAN^a

Thomas Albrecht^b

JASON BRENKER^{*a*}

LMS, Monash University

Monash University

TUNCAY ALAN^a

LMS, Monash University Adrian Neild^a*

LMS, Monash University

LMS, Monash University

SUPPLEMENTARY INFORMATION (SI) I.

Fig. S1: Plots depicting the amplitude ratio A_x/A_y (Mean value determined for all SSAW (i.e. 2 terminal) cases considered; i.e. Case 14 to 34) for a range of travelling wave and standing wave scenarios determined via curve fitting when compared to a fully coupled LN-fluid system along with the mean value as used in the numerical results. Reference to parameters and dimensions used for each case is listed in Table S1.

^{*}Corresponding author: Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.; E-mail: adrian.neild@monash.edu

Table S1: Case parameters as per produced in Figure S1. Number of interdigital transducer (IDT) terminals denote a travelling wave (TSAW) (i.e. 1) or a standing wave (SSAW) (i.e. 2) scenario. A $h/\lambda_{SAW} = 1/4.8$ was used to compare the streaming fields with that reported by Nama et al.¹ (i.e. $W = \lambda_{SAW}$, h = 1/4.8; $\lambda_{SAW} = 600 \mu m$). All cases are based on a $\lambda_{SAW} = 40 \mu m$.

Case Number (#)	BC _{imp}	Number of IDT terminals	W/λ_{SAW}	h/λ_{SAW}
1	PDMS	1 (TSAW)	10	1/4.8
2	PDMS	1 (TSAW)	10	1
3	PDMS	1 (TSAW)	10	2.5
4	PDMS	1 (TSAW)	5	1/4.8
5	PDMS	1 (TSAW)	5	1
6	PDMS	1 (TSAW)	5	2.5
7	Water	1 (TSAW)	10	1/4.8
8	Water	1 (TSAW)	10	1
9	Water	1 (TSAW)	10	2.5
10	Water	1 (TSAW)	5	1/4.8
11	Water	1 (TSAW)	5	1
12	Water	1 (TSAW)	5	2.5
13	PDMS	2 (SSAW)	10	1/4.8
14	PDMS	2 (SSAW)	10	1
15	PDMS	2 (SSAW)	10	2.5
16	PDMS	2 (SSAW)	5	1/4.8
17	PDMS	2 (SSAW)	5	1
18	PDMS	2 (SSAW)	5	2.5
19	PDMS	2 (SSAW)	2	1/4.8
20	PDMS	2 (SSAW)	2	1
21	PDMS	2 (SSAW)	2	2.5
22	PDMS	2 (SSAW)	1	1/4.8
23	PDMS	2 (SSAW)	1	1
24	Water	2 (SSAW)	10	1/4.8
25	Water	2 (SSAW)	10	1
26	Water	2 (SSAW)	10	2.5
27	Water	2 (SSAW)	5	1/4.8
28	Water	2 (SSAW)	5	1
29	Water	2 (SSAW)	5	2.5
30	Water	2 (SSAW)	2	1/4.8
31	Water	2 (SSAW)	2	1
32	Water	2 (SSAW)	2	2.5
33	Water	2 (SSAW)	1	1/4.8
34	Water	2 (SSAW)	1	1

Fig. S2: Plots depicting four specific cases showing the comparison between a fully coupled LN-fluid system against the use of the boundary condition in Equation 16 of the velocity at the LN-fluid interface. Comparisons for a SSAW case with W = 200 µm (i.e. $10 \lambda_{SAW}$) (a) h = 40 µm (i.e. $1 \lambda_{SAW}$; Case Number 14) (b) h = 100 µm (i.e. $2.5 \lambda_{SAW}$; Case Number 15) and with a W = 100 µm (i.e. $5 \lambda_{SAW}$) (c) h = 40 µm (i.e. $1 \lambda_{SAW}$; Case Number 17) (d) h = 100 µm (i.e. $2.5 \lambda_{SAW}$; Case Number 18). The y component velocity u_y , is denoted by the green line and the x component velocity u_x , is denoted by the black line. Solid lines represent the fully coupled model results and the dashed lines represent the fitted data along with the decay C_d , denoted on top of each curve.

Note: Reference to parameters and dimensions used for each case is listed in Table S1.

References

 N. Nama, R. Barnkob, Z. Mao, C. J. Kähler, F. Costanzo and T. J. Huang, *Lab on a Chip*, 2015, 15, 2700–2709.

Fig. S3: Resultant plots for a $\lambda_{SAW} = 40 \ \mu m$ and 10 μm high (i.e. h= 10 μm ; 0.25 λ_{SAW}) with a PDMS impedance boundary condition on the side walls and upper boundary. Surface plots represent the streaming velocity field $\langle v_2 \rangle$ for varying channel widths, (a) W = 400 μm (i.e. W = 10 λ_{SAW}),(b) W = 200 μm (i.e. W = 5 λ_{SAW}),(c) W = 80 μm (i.e. W = 2 λ_{SAW}) and (d) W = 40 μm (i.e. W = λ_{SAW})

Fig. S4: Resultant plots for a $\lambda_{SAW} = 40 \ \mu m$ and 20 μm high (i.e. $h = 20 \ \mu m$; 0.5 λ_{SAW}) with a PDMS impedance boundary condition on the side walls and upper boundary. Surface plots represent the streaming velocity field $\langle v_2 \rangle$ for varying channel widths, (a) W = 400 μm (i.e. W = 10 λ_{SAW}),(b) W = 200 μm (i.e. W = 5 λ_{SAW}),(c) W = 80 μm (i.e. W = 2 λ_{SAW}) and (d) W = 40 μm (i.e. W = λ_{SAW})

Fig. S5: Resultant plots for a $\lambda_{SAW} = 40 \ \mu m$ and 100 μm high (i.e. h= 100 μm ; 2.5 λ_{SAW}) with a PDMS impedance boundary condition on the side walls and upper boundary. Surface plots represent the streaming velocity field $\langle v_2 \rangle$ for varying channel widths, (a) W = 400 μm (i.e. W = 10 λ_{SAW}),(b) W = 200 μm (i.e. W = 5 λ_{SAW}),(c) W = 80 μm (i.e. W = 2 λ_{SAW}) and (d) W = 40 μm (i.e. W = λ_{SAW})

Fig. S6: Resultant plots for a $\lambda_{SAW} = 50 \ \mu m$, 50 μm high and 500 μm wide chamber (i.e. $W = 500 \ \mu m$ and $h = 50 \ \mu m$) with a PDMS impedance boundary condition on the side walls and upper boundary. Surface plots represent the (a) first-order pressure fields, P_1 (b) time-averaged second-order pressure fields, $\langle P_2 \rangle$ and (c) streaming velocity field $\langle v_2 \rangle$ and (d) a zoomed in surface plots of the resultant streaming velocity field, $\langle v_2 \rangle$ at the left hand side of the channel to illustrate the observed streaming rolls. Velocity field vectors are depicted with white arrows.

Fig. S7: Mesh distribution for a 400 μ m wide and 40 μ m high channel (i.e. W = 400 μ m; h = 40 μ m), (a) depicting the sectioning done consisting of a 2 μ m wide section at each side of the rectangular chamber, (b) an example mesh distribution consisting of boundary mesh elements, $d_b = 4 \mu m \times 0.2 \mu m$ and (c) a zoomed in view of the bottom left corner of the rectangular geometry. (d) Mesh convergence analysis carried out to satisfy a convergence, C(g) = 0.002 (Depicted with a black dashed line).

Fig. S8: Line plots describing the TW to SW ratio at $y = 5 \mu m$, where (a) the time-averaged absolute pressure, $\langle |P_1| \rangle$ against position x of the TW and SW components individually in μm (b) The SW to TW ratio at the local pressure minima locations in the x-direction.

Note: All demonstrated values correspond the left half of the channel width (i.e. $x = -200 \ \mu m$: $0 \ \mu m$) and are symmetrical about $x = 0 \ \mu m$. The SW/TW ratio is not shown for the node in the centre of the channel (i.e. $x = 0 \ \mu m$) as it would skew the other values, registering a SW/TW ratio of 1.4987×10^{12} .