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Additional details of image analysis and machine learning

The general problem of predicting continuously-varying outcomes from data is called 

“regression”, and predicting classes, or labels, from data is called “classification”.1,2 Here we 

apply computer vision to extract summary data from scanned images of IDA-AMPS tests, 

and standard machine learning techniques to the classification problem of distinguishing 

micro/hypo anemic samples from normal samples and the regression problem of predicting 

continuously-varying red blood cell indices from images of the IDA-AMPS test.

The scanned images of groups of 12 IDA-AMPS tests were first segmented and aligned 

from the raw color scan image, resulting in cropped images of individual tubes. We then 

standardized the data by calculating the red intensity per pixel of each image, and then 

calculated the mean across the width of the tube, reducing each image into a single vector of 

180 dimensions, representing the red intensity of the test at a 180 sequential distances from 

the test’s plug. All computer vision was performed using the Python programming language, 

using the SciPy and NumPy libraries.

The resulting 180-dimensional red intensity summary of each test’s original image was 

further dimensionally reduced to 30 dimensions using principal components analysis (PCA) 

to make further analysis more tractable, and to simultaneously remove redundant information 

(e.g. nearby pixels that were highly correlated). 

To automate distinguishing normal from micro/hypo anemic patients based on the IDA-

AMPS test, we use logistic regression1,3 as a machine learning algorithm to discriminate 

between tests belonging to different patient types. Logistic regression is an algorithm which, 

given a training set of input data (here, our 30-dimensional representation of each test image), 

and associated labels (here, whether the patient was anemic or normal), learns a function 

mapping the input data into a probability of the test sample having come from a patient from 

either the anemic or normal group. We fit the logistic regression model using L2-



regularization using scikit-learn, guarding against over-fitting by repeated random resampling 

with replacement of our training set, and fully holding out a test set during all cross-

validation.4 A training set and validation set are randomly sampled 500 times and the average 

performance across all sampled validation sets is tabulated. In the case of classification, 

performance is defined as the AUC of the resulting discriminator. 

To predict red blood cell indices, we use a different, but equally standard, algorithm 

called support vector regression (SVR) with a radial basis function kernel.3 The goal of SVR 

is to produce a mapping from our 30-dimensional representation of an IDA-AMPS test to one 

continuous red blood cell index, which we fit in the Python language using the scikit-learn 

package. We define performance in the regression task using the same cross-validation 

approach as described above, but with performance defined as the average R2 value of the 

true blood parameters (as measured by a hematology analyzer) vs. predicted blood 

parameters across each of the four validation sets. The Python code used in this manuscript 

can be obtained from a GitHub repository by contacting the first author.  

Differentiating IDA from β-Thalassemia Trait (β-TT)

IDA is characterized by microcytic hypochromic red blood cells caused by low levels of 

iron in the blood and bone marrow.  Diagnostic biomarkers for IDA include serum iron, 

transferrin saturation, and ferritin.  In several clinical conditions, however, these biomarkers 

do not change rapidly enough to reflect actual iron concentration.2  Recently, a variety of red 

blood cell indices have found favor in clinical diagnoses including mean corpuscular volume 

(MCV), mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution 

width (RDW), and reticulocyte hemoglobin content (CHr).5 Relative to healthy patients, 

patients with IDA have low values of MCV, MCHC, and CHr, and a larger RDW. Beta-

thalessemia minor (i.e. β-thalessemia trait: β-TT) is a benign genetic disorder that presents a 

potentially confounding diagnosis to IDA because both conditions result in microcytic and 



hypochromic red blood cells. Identification of β-TT is vital to aid in prevention of β-

thalessemia major through genetic counseling; transmission of β-thalessemia is autosomal 

recessive and so heterozygous carriers can attempt to mitigate the risk of a homozygous 

offspring.  Due to the characteristically smaller (bimodal) RDW and larger total red blood 

cell count for patients with β-TT, it can be distinguished from IDA.5  A population of cells 

with a larger RDW will likely have a larger distribution in the density of red blood cells. A 

diagnostic designed to quantify the density and distribution in density of red blood cells 

should, in principle, be able to differentiate IDA.

We evaluated the predictive ability of our test to differentiate β-TT and IDA using a small 

data set from IDA (n = 5 and 57) and found, using digital analysis, an AUC of 0.41, 

effectively a random guess.   This analysis suggests that our test may not be able to 

distinguish between β-TT and IDA (although a larger sample size of β-TT patients is required 

for a more definitive conclusion). The inability of a test to differentiate β-TT and IDA could 

limit its value in regions where the prevalence of β-TT is highest; India, Thailand, and 

Indonesia account for nearly 50% of the global burden of β-TT.6 Although we have no 

specifically identified samples with alpha-thalassemia minor in our study, a similar concern 

applies, and would be relevant in South East Asia and China. 

A subset of our patients classified as IDA based on %Hypo and HGB, had MCV and 

MCH values in the normal range (80 - 100 µm3, and 26 - 34 pg/cell).  We evaluated the 

impact of these samples on the diagnostic capabilities of the IDA-AMPS test using visual 

analysis from blinded readers.  If the normal MCV/MCH samples were excluded from the 

analysis (14 samples out of 57), the AUC was nearly unchanged—0.89 versus 0.88 when 

these samples are not excluded.  



Statistical Methods

We define sensitivity (i.e., the true positive rate) as (number of true 

positives)/(number of true positives + number of false negatives) and specificity (i.e., the true 

negative rate) as (number of true negatives)/(number of true negatives + number of false 

positives) and defined their corresponding 95% Exact binomial confidence intervals. 

Receiver operating characteristic (ROC) curves and their corresponding area under the curve 

(AUC) and 95% confidence intervals were calculated in MatLab (Cardillo G. [2008] ROC 

curve: compute a Receiver Operating Characteristic curve). Lin’s concordance correlation 

coefficient7 was calculated using an open-license tool from the National Institute of Water 

and Atmospheric research of New Zealand 

(https://www.niwa.co.nz/node/104318/concordance).

Choice of Read Guide vs. Color Bar

Many point-of-care diagnostic tests use a color bar to guide readers to make a 

quantitative (or semiquantitative) determination.  Here, we instead use a "read guide" (Figure 

SX). Using the read guide, the readers are doing pattern recognition over the length of the 

tube rather than evaluating “redness” at any specific point in the tube. Using a color bar, 

therefore, is difficult as the patterns are more complicated than a simple shift in color.  Two 

patients with IDA might have very different distributions in the low density of their RBCs, 

giving very different looking results.  For example: Patient A may have 30% hypochromic 

RBCs, but those RBCs might be only slightly under the threshold of low MCHC (how 

%Hypo are defined). The IDA-AMPS test for this Patient A might have a strong band of red 

only in the bottom phase of the AMPS with some RBCs settled at the M/B interface.  Patient 

B may have 15% hypochromic RBCs, but those RBCs might have a larger distribution in 

MCHC (some very low, some only slightly below the threshold).  The IDA-AMPS test for 

this patient might appear to have a strong red streak in both the bottom and middle phases 



and a small number of RBCs settled at the T/M and M/B interfaces.  In both cases, the 

patients have red cells above the bottom packed cells that are visible by eye and would be 

classified as IDA, even though the distribution of the red cells is different. 

Chemicals

AMPS solutions were prepared using the following reagents: poly(vinyl alcohol) containing 

78% hydroxyl and 22% acetate groups (MW = 6 kD, Acros Organics**), dextran (MW = 500 

kD, Spectrum Chemicals), Ficoll (MW = 400 kD, Sigma-Alrich), ethylenediaminetetra-acetic 

acid disodium salt (EDTA, Sigma-Aldrich), sodium phosphate dibasic (Mallinckrodt), 

potassium phosphate monobasic (EMD), and sodium chloride (EMD).  All chemicals were 

used as received from the suppliers.   

Preparation of IDA-AMPS

IDA-AMPS was prepared mixing, in a volumetric flask 10.2% (w/v) partially hydrolyzed 

poly(vinyl alcohol) (containing 78% hydroxyl and 22% acetate groups) (MW ~6 kD), 5.6% 

(w/v) dextran (MW ~500 kD), 7.4% (w/v) Ficoll (MW ~400 kD), 5 mM EDTA (to prevent 

coagulation), 9.4 mM sodium phosphate dibasic, and 3.0 mM potassium phosphate 

monobasic. The solution was brought to volume and the pH was brought to 7.40 ±0.01 (Orion 

2 Star, Thermo Scientific) using sodium hydroxide and hydrochloric acid. The osmolality 

was measured to 290 ±15 using a vapor pressure osmometer (Vapro 5500, Wescor).  We 

measured density with an oscillating U-tube densitometer (DMA35 Anton Paar). Rapid tests 

were prepared as described previously.8

**The bottle of PVA we use (lot # A0324406) is labeled as “MW = 2 kD, 75% hydrolized.” 
We discovered, however, that this bottle was mislabeled by the supplier and is actually MW 
= 6 kD, 78% hydrolized.



Figure S1. Flow chart illustrating the diagnosis of hypochromia, micro/hypo anemia, iron 
deficiency anemia, and β-thalassemia trait used in this study based on hematological indices 
measured by a hematology analyzer (Advia 2120, Siemens).

Hemoglobin 
Concentration 

Population g/dl
Female ≥ 15 years < 12.0
Male ≥ 15 years < 13.0
Children < 5 years < 11.0
Children ≥ 5, < 15 years < 11.5
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Normal %Hypo and

Hemoglobin

Hypochromia

%Hypo ≥ 3.9%

Micro/Hypo AnemiaHypochromic Non-Anemic

Iron Deficiency

%Micro/%Hypo ≤ 1.5

β-Thalassemia Trait

%Micro/%Hypo > 1.5

Hemoglobin 
Concentration 

Population g/dl
Female ≥ 15 years ≥ 12.0
Male ≥ 15 years ≥ 13.0
Children < 5 years ≥ 11.0
Children ≥ 5, < 15 years ≥ 11.5

Iron Deficiency Anemia

%Micro/%Hypo ≤ 1.5



Table S1. Hemoglobin concentration thresholds used to define anemia in our study.9

Hemoglobin Concentration (HGB)
Population g/dL
Female ≥ 15 years < 12.0
Male ≥ 15 years < 13.0
Children < 5 years < 11.0
Children ≥ 5, < 15 years < 11.5



Table S2. Populations of interest for the patients involved in the assessment of the IDA-
AMPS test.  

Male Female

Population Normal IDA β-TT Normal IDA β-TT
< 4.99 years 18 15 3 19 9 1
5 to 14.99 years 12 9 1 13 5 0
> 15 years 13 7 0 15 12 0
Total 43 31 4 47 26 1



Table S3. Lin's concordance correlation coefficients assessing inter- and intra- reader 
concordance for the visual analysis of the IDA-AMPS test after two minutes centrifugation.7 
Inter-reader ρc was assessed by averaging the ρc between each pair of readers.

Lin's Concordance Correlation Coefficient
ρc (95% Confidence Interval)

Intra-reader - Reader 1 0.995 (0.994 - 0.997)
Intra-reader - Reader 2 0.985 (0.979 - 0.989)
Intra-reader - Reader 3 0.984 (0.978 - 0.988)
Inter-reader - Replicate 1 0.910 (0.879 - 0.934)
Inter-reader - Replicate 2 0.913 (0.882 - 0.936)



Figure S2. A. Machine learning results for mean corpuscular hemoglobin concentration 
(MCHC) compared to a hematology analyzer and B. Bland-Altman plot showing the 
agreement between true and predicted MCHC (n = 152).  In both cases repeated random sub-
sampling validation (n = 500) was used to guard against over-fitting.  Error bars represent the 
99% bootstrap confidence intervals for 500 validation sets.

A.

B.



Figure S3. A. Machine learning results for corpuscular hemoglobin concentration (CH) 
compared to a hematology analyzer and B. Bland-Altman plot showing agreement between 
true and predicted CH (n = 152).  In both cases repeated random sub-sampling validation (n = 
500) was used to guard against over-fitting.  

A.

B.



Figure S4. A. Machine learning results for hemoglobin concentration (HGB) compared to a 
hematology analyzer and B. Bland-Altman plot showing the agreement between true and 
predicted HGB (n = 152).  In both cases repeated random sub-sampling validation (n = 500) 
was used to guard against over-fitting.  

A.

B.



Figure S5. A. Machine learning results for hematocrit (HCT) compared to a hematology 
analyzer and B. Bland-Altman plot showing the agreement between true and predicted HCT 
(n = 152).  In both cases repeated random sub-sampling validation (n = 500) was used to 
guard against over-fitting.  

A.

B.



Figure S6. A. Machine learning results for corpuscular hemoglobin (MCH) compared to a 
hematology analyzer and B. Bland-Altman plot showing the agreement between true and 
predicted MCH (n = 152).  In both cases repeated random sub-sampling validation (n = 500) 
was used to guard against over-fitting.  

A.

B.



Figure S7. A. Machine learning results for red blood cell distribution width (RDW) 
compared to a hematology analyzer and B. Bland-Altman plot showing the agreement 
between true and predicted RDW (n = 152).  In both cases repeated random sub-sampling 
validation (n = 500) was used to guard against over-fitting.  

A.

B.



Figure S8. A. Machine learning results for hemoglobin distribution width (HDW) compared 
to a hematology analyzer and B. Bland-Altman plot showing the agreement between true and 
predicted HDW (n = 152).  In both cases repeated random sub-sampling validation (n = 500) 
was used to guard against over-fitting.  

A.

B.



Figure S9. A. Machine learning results for percent microcytic red blood cells (%Micro) 
compared to a hematology analyzer and B. Bland-Altman plot showing the agreement 
between true and predicted %Micro (n = 152).  In both cases repeated random sub-sampling 
validation (n = 500) was used to guard against over-fitting.  

A.

B.



Figure S10. A. Machine learning results for percent microcytic versus hypochromic red 
blood cells (%Micro/%Hypo) compared to a hematology analyzer and B. Bland-Altman plot 
showing the agreement between true and predicted %Micro/%Hypo)(n = 152).  In both cases 
repeated random sub-sampling validation (n = 500) was used to guard against over-fitting.  .

A.

B.



Figure S11. A. Machine learning results for the number of red blood cells (RBC) compared 
to a hematology analyzer and B. Bland-Altman plot showing the agreement between true and 
predicted RBC (n = 152).  In both cases repeated random sub-sampling validation (n = 500) 
was used to guard against over-fitting.  

A.

B.



Figure S12. A. Machine learning results for percent hypochromic red blood cells (%Hypo) 
compared to a hematology analyzer and B. Bland-Altman plot showing the agreement 
between true and predicted %Hypo (n = 152).  In both cases repeated random sub-sampling 
validation (n = 500) was used to guard against over-fitting.  

A.

B.



Figure S13.  A. Machine learning results for mean corpuscular volume (MCV) compared to a 
hematology analyzer and B. Bland-Altman plot showing the agreement between true and 
predicted MCV (n = 152).  In both cases repeated random sub-sampling validation (n = 500) 
was used to guard against over-fitting.  

A.

B.



Figure S14. A. Machine learning results for percent macrocytic red blood cells (%Macro) 
compared to a hematology analyzer and B. Bland-Altman plot showing the agreement 
between true and predicted %Macro (n = 152).  In both cases repeated random sub-sampling 
validation (n = 500) was used to guard against over-fitting.  

A.

B.



Figure S15. Reader training guide used to assign redness score to IDA-AMPS tests.  

1
no or nearly 
no red above 

HCT

5
very strong 

band of red in 
both phases 

and at 
interfaces

2
some red in 
one or both 

phases or 
packed at 
interfaces

3
moderate red 
in one or both 

phases or 
packed at 
interfaces 

4
strong red in 
one or both 

phases or 
packed at 
interfaces
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