Electronic supplementary information For

Analyzing water-head-driven microfluidic oscillators for autonomous control of period and flow rate

Van Bac Dang and Sung-Jin Kim*

I. Open condition of the valve and its threshold pressure

The open condition of valve m is $P_{\mathrm{VT} m}-P_{\mathrm{VB} m}>P_{\mathrm{OTH} m}$. Because $P_{\mathrm{VT} m}=P_{\mathrm{I}}$ and $P_{\mathrm{VB} m}=P_{\mathrm{CB} n}$, the open condition is rewritten as $P_{\mathrm{CB} n}<P_{\mathrm{I}}-P_{\mathrm{OTH} m}$. We measured the open threshold pressure of valve $m(m=1,2)$ with the oscillator. To obtain $P_{\mathrm{OT} m}$, we measured $P_{\mathrm{VT} m}, P_{\mathrm{VB} m}$, and $P_{\mathrm{CT} m}$ of the oscillator with pressure sensors (PX309-015G5V, Omega Eng). We maintained $P_{\mathrm{VT} m}$ at 3.7 kPa and decreased $P_{\mathrm{VB} m}$. At the moment valve m opened, $P_{\mathrm{CT} m}$ rose rapidly (Fig. S1a).

Fig. S1. Measurement of open threshold pressure. (a) Pressure profiles of P_{VB} and P_{CT}. (b to e) Calibration curves of $P_{\mathrm{OTH} n}$ with respect to $P_{\mathrm{I}} . R_{\mathrm{F}}$ is $3.2 \times 10^{11}, 1.2 \times 10^{12}, 2.5 \times 10^{13}$, and $1.3 \times$ $10^{15} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-5}$ from (b) to (e), respectively. The blue and red lines correspond to valves 1 and 2 , respectively.

At this time, we obtained $P_{\mathrm{OTH} m}$ from $P_{\mathrm{OT} m}=P_{\mathrm{VT} m}-P_{\mathrm{VB} m}$. Figures S 1 b to S 1 e show the calibration curves of $P_{\mathrm{OTH} m}$ with respect to $P_{\mathrm{VT} m}\left(=P_{\mathrm{I}}\right)$ under different R_{F}. From the curves of Figs. S1b to S1e, we obtained $P_{\mathrm{OTH} 1}=-341.37 \log _{10}\left(R_{\mathrm{F}}\right)+7428.40$ and $P_{\mathrm{OTH} 2}=-298.02 \log _{10}\left(R_{\mathrm{F}}\right)+6683.15$ at $P_{\mathrm{I}}=3.7 \mathrm{kPa}$, and applied them to Figs. 4 and 5 in the main text. The unit of $P_{\mathrm{OTH} 1}$ and $P_{\mathrm{OTH} 2}$ is Pa.

II. Theoretical derivation of equations for $\boldsymbol{P}_{\mathrm{CB} n}$ and $\boldsymbol{P}_{\mathrm{CT} n}$

One oscillation period includes the sequential open-process of the two valves. At the $k^{\text {th }}$ oscillation period $(k=0,1,2 \ldots)$, valve 1 opens for $t_{\mathrm{II}}^{(k)} \leq t \leq t_{\mathrm{Fl}}^{(k)}$ and then valve 2 opens for $t_{12}^{(k)} \leq t \leq t_{\mathrm{F} 2}^{(k)}$. Figre S2 shows the pressure profiles of $P_{\mathrm{CT} 1}, P_{\mathrm{CB} 1}$, and $P_{\mathrm{CB} 2}$ at the $k^{\text {th }}$ period. To derive equations, we used the circuit diagram that depicts the fluidic connection at the state when valve 1 is open and valve 2 is closed (Fig. S3).

Fig. S2. Pressure profiles of $P_{\mathrm{CT} 1}, P_{\mathrm{CB} 1}$, and $P_{\mathrm{CB} 2}$ at the $k^{\text {th }}$ oscillation period.

Fig. S3. For the state when valve 1 is open, the relation between $P_{\mathrm{CT} 1}$ and $P_{\mathrm{CB} 1}$ is obtained in (a) and the relation between $P_{\mathrm{CT} 2}$ and $P_{\mathrm{CB} 2}$ is obtained in (b).

While valve 1 is open,

$$
\begin{equation*}
P_{\mathrm{CT} 1}=P_{\mathrm{I}} . \tag{S1}
\end{equation*}
$$

From Fig. S3a, we obtain

$$
\begin{equation*}
C_{1} \frac{d}{d t}\left(P_{\mathrm{CT} 1}-P_{\mathrm{CBI}}\right)=\frac{P_{\mathrm{CB} 1}-0}{R_{\mathrm{P} 1}} . \tag{S2}
\end{equation*}
$$

By the initial condition of $P_{\mathrm{CB} 1}$ at $t_{\mathrm{II}}^{(k)}, P_{\mathrm{CB} 1}(t)$ is

$$
\begin{equation*}
P_{\mathrm{CBI}}(t)=P_{\mathrm{CBI}}\left(t_{\mathrm{II}}^{(k)}\right) e^{-\frac{-t-t_{1(k)}^{(k)}}{\mathrm{C}_{1} \mathrm{P}_{\mathrm{P}}}} . \tag{S3}
\end{equation*}
$$

From Fig. S3b, we obtain

$$
\begin{equation*}
\frac{0-P_{\mathrm{CB} 2}}{R_{\mathrm{P} 2}}=C_{2} \frac{d}{d t}\left(P_{\mathrm{CB} 2}-P_{\mathrm{CT} 2}\right)=\frac{P_{\mathrm{CT} 2}-P_{\mathrm{J}}}{R_{\mathrm{F} 2}} . \tag{S4}
\end{equation*}
$$

After removing $P_{\mathrm{CT} 2}$ in eqn (S4),

$$
\begin{equation*}
-\left(\frac{R_{\mathrm{F} 2}}{R_{\mathrm{P} 2}}+1\right) \frac{d}{d t} P_{\mathrm{CB} 2}=\frac{1}{C_{2} R_{\mathrm{P} 2}} P_{\mathrm{CB} 2} . \tag{S5}
\end{equation*}
$$

By the initial condition of $P_{\mathrm{CB} 2}$ at $t_{\mathrm{Il}}^{(k)}$, eqn (S5) is

$$
\begin{equation*}
P_{\mathrm{CB} 2}(t)=P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 1}^{(k)}\right) e^{-\frac{t-t_{1}^{(k)}}{C_{2}\left(R_{\mathrm{r} 2}+R_{\mathrm{P} 2}\right)}} . \tag{S6}
\end{equation*}
$$

Then from eqn (S4),

$$
\begin{equation*}
P_{\mathrm{CT} 2}(t)=P_{\mathrm{J}}-\frac{R_{\mathrm{F} 2}}{R_{\mathrm{P} 2}} P_{\mathrm{CB} 2}(t) . \tag{S7}
\end{equation*}
$$

The equations for the open state of valve 2 can be derived in the same manner. Table S1 summarizes equations for the changes of pressures and duration times of each valve's openings.

Table S1. Equations at the open state of each valve.

Valve 1 open state: $t_{\mathrm{i} 1}^{(k)} \leq t \leq t_{\mathrm{f} 1}^{(k)}$		Valve 2 open state: $t_{\mathrm{i} 2}^{(k)} \leq t \leq t_{\mathrm{f} 2}^{(k)}$	
$P_{\text {CT1 } 1}=P_{\mathrm{I}}$	(S1)	$P_{\text {CT2 } 2}=P_{\text {I }}$	(S8)
$P_{\mathrm{CB} 1}(t)=P_{\mathrm{CB} 1}\left(t_{\mathrm{Il}}^{(k)}\right) e^{-\frac{t-t_{11}^{(k)}}{C_{1} R_{\mathrm{P} 1}}}$	(S3)	$P_{\mathrm{CB} 2}(t)=P_{\mathrm{CB} 2}\left(t_{12}^{(k)}\right) e^{-\frac{t-t_{1}^{(k)}}{C_{2} R_{\mathrm{p} 2}}}$	(S9)
$P_{\mathrm{CB} 2}(t)=P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 1}^{(k)}\right) e^{-\frac{t-t_{11}^{(k)}}{\mathrm{C}_{2}\left(R_{\mathrm{F} 2}+R_{\mathrm{P} 2}\right)}}$	(S6)	$P_{\mathrm{CB1}}(t)=P_{\mathrm{CB1}}\left(t_{12}^{(k)}\right) e^{-\frac{t-t_{1}^{(k)}}{C_{1}\left(R_{\mathrm{F} 1}+R_{\mathrm{P} 1}\right)}}$	(S10)
$P_{\mathrm{CT} 2}(t)=P_{\mathrm{J}}-\frac{R_{\mathrm{F} 2}}{R_{\mathrm{P} 2}} P_{\mathrm{CB} 2}(t)$	(S7)	$P_{\mathrm{CT} 1}(t)=P_{\mathrm{J}}-\frac{R_{\mathrm{F} 1}}{R_{\mathrm{P} 1}} P_{\mathrm{CB} 1}(t)$	(S11)

III. Theoretical derivation of equations of $\boldsymbol{P}_{\mathrm{CB} \boldsymbol{n}}$ at times $t_{\mathrm{I} n}^{(k)}$ and $t_{\mathrm{F} n}^{(k)}$

We derive equations for $P_{\mathrm{CB} 1}\left(t_{12}^{(k)}\right), P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 1}^{(k)}\right), P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 1}^{(k)}\right)$, and $P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)$. The open condition of valve 2 is $P_{\mathrm{VT} 2}-P_{\mathrm{VB} 2}>P_{\mathrm{OTH} 2}$. At the moment valve 2 is opened in the $k^{\text {th }}$ period, the condition is

$$
P_{\mathrm{VT} 2}\left(t_{\mathrm{F} 1}^{(k)}\right)-P_{\mathrm{VB} 2}\left(t_{\mathrm{F} 1}^{(k)}\right)=P_{\mathrm{OTH} 2},
$$

with

$$
\begin{equation*}
P_{\mathrm{VT} 2}\left(t_{\mathrm{F} 1}^{(k)}\right)=P_{\mathrm{I}} \text { and } P_{\mathrm{VB} 2}\left(t_{\mathrm{Fl}}^{(k)}\right)=P_{\mathrm{CB} 1}\left(t_{\mathrm{Fl}}^{(k)}\right) . \tag{S12}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P_{\mathrm{CBI}}\left(t_{\mathrm{Fl}}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{OTH} 2} . \tag{S13}
\end{equation*}
$$

From the continuity of pressure differences across capacitor 1,

$$
\begin{equation*}
P_{\mathrm{CT} 1}\left(t_{\mathrm{F} 1}^{(k)}\right)-P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 1}^{(k)}\right)=P_{\mathrm{CT} 1}\left(t_{12}^{(k)}\right)-P_{\mathrm{CB} 1}\left(t_{12}^{(k)}\right) . \tag{S14}
\end{equation*}
$$

From Eqs. (S1) and (S13), eqn (S14) is

$$
\begin{equation*}
P_{\mathrm{CT} 1}\left(t_{12}^{(k)}\right)-P_{\mathrm{CB} 1}\left(t_{12}^{(k)}\right)=P_{\mathrm{OTH} 2} . \tag{S15}
\end{equation*}
$$

When valve 2 opens, valve 1 is closed. From Fig. S2(a), we obtain:

$$
\begin{equation*}
\frac{0-P_{\mathrm{CB} 1}\left(t_{12}^{(k)}\right)}{R_{\mathrm{P} 1}}=\frac{P_{\mathrm{CT} 1}\left(t_{12}^{(k)}\right)-P_{\mathrm{J}}}{R_{\mathrm{F} 1}} . \tag{S16}
\end{equation*}
$$

From Eqs. (S15) and (S16), we derive an equation for $P_{\mathrm{CB} 1}$ at the moment valve 2 opens:

$$
\begin{equation*}
P_{\mathrm{CB1}}\left(t_{\mathrm{12}}^{(k)}\right)=\frac{R_{\mathrm{P} 1}}{R_{\mathrm{F} 1}+R_{\mathrm{P} 1}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right) . \tag{S17}
\end{equation*}
$$

Similarly, at the moment valve 1 opens in the $k^{\text {th }}$ period, the condition of valve 1 is

$$
\begin{equation*}
P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{OTH} 1} . \tag{S18}
\end{equation*}
$$

From the continuity of pressure differences across capacitor 2,

$$
\begin{equation*}
P_{\mathrm{CB} 2}\left(t_{\mathrm{II}}^{(k)}\right)=\frac{R_{\mathrm{P} 2}}{R_{\mathrm{F} 2}+R_{\mathrm{P} 2}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 1}\right) . \tag{S19}
\end{equation*}
$$

Table S2 summarizes the equations of $P_{\mathrm{CB} n}$ at times $t_{\mathrm{I} n}^{(k)}$ and $t_{\mathrm{F} n}^{(k)}$.

Table S2. Equations of $P_{\mathrm{CB} n}$ at times $t_{\mathrm{In}}^{(k)}$ and $t_{\mathrm{F} n}^{(k)}$.

$P_{\mathrm{CB} 1}$	$P_{\mathrm{CB} 2}$		
$P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 1}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{OTH} 2}$	$(\mathrm{~S} 13)$	$P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{OTH} 1}$	(S18)
$P_{\mathrm{CB} 1}\left(t_{12}^{(k)}\right)=\frac{R_{\mathrm{P} 1}}{R_{\mathrm{F} 1}+R_{\mathrm{P} 1}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right)$	$(\mathrm{S} 17)$	$P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 1}^{(k)}\right)=\frac{R_{\mathrm{P} 2}}{R_{\mathrm{F} 2}+R_{\mathrm{P} 2}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 1}\right)$	(S19)

IV. Theoretical derivation of equations for fluidic switching periods

From eqn (S3), we obtain the duration time of the opening of valve 1 :

$$
\begin{equation*}
T_{1}^{(k)}=t_{\mathrm{Fl}}^{(k)}-t_{\mathrm{II}}^{(k)}=C_{1} R_{\mathrm{P} 1} \ln \left[\frac{P_{\mathrm{CB} 1}\left(t_{\mathrm{Il}}^{(k)}\right)}{P_{\mathrm{CB} 1}\left(t_{\mathrm{Fl} 1}^{(k)}\right)}\right] . \tag{S20}
\end{equation*}
$$

Similarly, the duration time of the opening of valve 2 can be written as

$$
\begin{equation*}
T_{2}^{(k)}=t_{\mathrm{F} 2}^{(k)}-t_{\mathrm{I} 2}^{(k)}=C_{2} R_{\mathrm{P} 2} \ln \left[\frac{P_{\mathrm{CB} 2}\left(t_{\mathrm{1} 2}^{(k)}\right)}{P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)}\right] . \tag{S21}
\end{equation*}
$$

The $k^{\text {th }}$ switching period of the two valves is $T^{(k)}=T_{1}^{(k)}+T_{2}^{(k)}$. Equations (S20) and (S21) show that $T^{k)}$ includes $P_{\mathrm{CB} 1}\left(t_{\mathrm{II}}^{(k)}\right), P_{\mathrm{CB} 1}\left(t_{\mathrm{FI}}^{(k)}\right), P_{\mathrm{CB} 2}\left(t_{12}^{(k)}\right)$, and $P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)$. Because we obtained $P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 1}^{(k)}\right)$ and $P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 2}^{(k)}\right)$ (Table S2), we need $P_{\mathrm{CB} 1}\left(t_{\mathrm{II}}^{(k)}\right)$ and $P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 2}^{(k)}\right)$ for $T^{(k)}$.

At $k=0$, we assume valve 1 opens and valve 2 closes. Thus,

$$
\begin{equation*}
P_{\mathrm{CBI}}\left(t_{\mathrm{II}}^{(0)}\right)=P_{\mathrm{CT} 1}\left(t_{\mathrm{II}}^{(0)}\right)=P_{\mathrm{I}} . \tag{S22}
\end{equation*}
$$

From eqn (S4),

$$
\begin{equation*}
P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 1}^{(0)}\right)=P_{\mathrm{CT} 2}\left(t_{\mathrm{I} 1}^{(0)}\right)=\frac{R_{\mathrm{P} 2}}{R_{\mathrm{F} 2}+R_{\mathrm{P} 2}} P_{\mathrm{J}} . \tag{S23}
\end{equation*}
$$

From Eqs. (S13), (S20), and (S22), the duration time of valve 1 at the $0^{\text {th }}$ period is

$$
\begin{equation*}
T_{1}^{(0)}=t_{\mathrm{Fl}}^{(0)}-t_{\mathrm{Il}}^{(0)}=C_{1} R_{\mathrm{P} 1} \ln \left[\frac{P_{\mathrm{I}}}{P_{\mathrm{I}}-P_{\mathrm{OTH} 2}}\right] . \tag{S24}
\end{equation*}
$$

When valve 2 opens, the continuity of pressure differences across capacitor 2 should be met:

$$
\begin{equation*}
P_{\mathrm{CT} 2}\left(t_{\mathrm{F} 1}^{(0)}\right)-P_{\mathrm{CB} 2}\left(t_{\mathrm{F} 1}^{(0)}\right)=P_{\mathrm{CT} 2}\left(t_{12}^{(0)}\right)-P_{\mathrm{CB} 2}\left(t_{12}^{(0)}\right) . \tag{S25}
\end{equation*}
$$

Applying Eqs. (S6)-(S8), and (S24) to eqn (S25), we obtain $P_{\text {CB1 }}$ at the moment valve 2 opens in the $0^{\text {th }}$ period:

$$
\begin{equation*}
P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 2}^{(0)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+P_{\mathrm{J}}\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 2}}{P_{\mathrm{I}}}\right)^{a_{1}}, \tag{S26}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{1}=\frac{C_{1} R_{\mathrm{P} 1}}{C_{2}\left(R_{\mathrm{F} 2}+R_{\mathrm{P} 2}\right)} \tag{S27}
\end{equation*}
$$

At $k \geq 1$, we can obtain $P_{\mathrm{CB} 1}\left(t_{\mathrm{II}}^{(k)}\right)$ and $P_{\mathrm{CB} 2}\left(t_{12}^{(k)}\right)$.
At the moment valve 1 opens in the $k^{\text {th }}$ period, the continuity condition of pressure difference across capacitor 1 is

$$
\begin{equation*}
P_{\mathrm{CT} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)-P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)=P_{\mathrm{CT} 1}\left(t_{\mathrm{II}}^{(k)}\right)-P_{\mathrm{CB} 1}\left(t_{\mathrm{I} 1}^{(k)}\right) . \tag{S28}
\end{equation*}
$$

From eqn (S10) and (S17),

$$
\begin{equation*}
P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)=\frac{R_{\mathrm{P} 1}}{R_{\mathrm{F} 1}+R_{\mathrm{P} 1}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right) e^{-\frac{t_{\mathrm{F} 2}^{(k-1)}-t_{1}^{(k-1)}}{C_{1}\left(R_{\mathrm{F} 1}+R_{\mathrm{P} 1}\right)}} . \tag{S29}
\end{equation*}
$$

From eqns (S18) and (S21), eqn (S29) is

$$
\begin{equation*}
P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)=\frac{R_{\mathrm{P} 1}}{R_{\mathrm{F} 1}+R_{\mathrm{P} 1}}\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right)\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 1}}{P_{\mathrm{CB} 2}\left(t_{12}^{(k-1)}\right)}\right)^{a_{2}} \tag{S30}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{2}=\frac{C_{2} R_{\mathrm{P} 2}}{C_{1}\left(R_{\mathrm{F} 1}+R_{\mathrm{P} 1}\right)} \tag{S31}
\end{equation*}
$$

From eqn (S11),

$$
\begin{equation*}
P_{\mathrm{CT} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)-P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right)=P_{\mathrm{J}}-\left(\frac{R_{\mathrm{F} 1}}{R_{\mathrm{P} 1}}+1\right) P_{\mathrm{CB} 1}\left(t_{\mathrm{F} 2}^{(k-1)}\right) . \tag{S32}
\end{equation*}
$$

Applying eqns. (S1), (S30), and (S31) to eqn (S28), we obtain:

$$
\begin{equation*}
P_{\mathrm{CB1}}\left(t_{\mathrm{II}}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right)\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 1}}{P_{\mathrm{CB} 2}\left(t_{12}^{(k-1)}\right)}\right)^{a_{2}} . \tag{S33}
\end{equation*}
$$

Similarly, we can get

$$
\begin{equation*}
P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 2}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 1}\right)\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 2}}{P_{\mathrm{CB} 1}\left(t_{\mathrm{I} 1}^{(k)}\right)}\right)^{a_{1}} . \tag{S34}
\end{equation*}
$$

We used $C_{1}=C_{2}, R_{\mathrm{F} 1}=R_{\mathrm{F} 2}$, and $R_{\mathrm{P} 1}=R_{\mathrm{P} 2}$ in the experiment, and $T^{(k)}=T_{1}^{(k)}+T_{2}^{(k)}$. Thus, the final equations for the period are summarized in Table S3.

Table S3. Theoretical equations for period and related pressures

$$
\begin{align*}
& T^{(k)}=C R_{\mathrm{P}} \ln \left[\frac{P_{\mathrm{CB1}}\left(t_{\mathrm{I} 1}^{(k)}\right) P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 2}^{(k)}\right)}{\left(P_{\mathrm{I}}-P_{\mathrm{OTH} 1}\right)\left(P_{\mathrm{I}}-P_{\mathrm{OTH} 2}\right)}\right] \tag{S13,S18,S20,S21}\\
& P_{\mathrm{CB1} 1}\left(t_{\mathrm{II}}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 2}\right)\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 1}}{P_{\mathrm{CB} 2}\left(t_{\mathrm{I} 2}^{(k-1)}\right)}\right)^{a} \tag{S33}\\
& P_{\mathrm{CB} 2}\left(t_{\mathrm{II} 2}^{(k)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+\left(P_{\mathrm{J}}-P_{\mathrm{OTH} 1}\right)\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 2}}{P_{\mathrm{CB1} 1}\left(t_{\mathrm{II}}^{(k)}\right)}\right)^{a} \tag{S34}
\end{align*}
$$

with $a=\frac{1}{1+R_{\mathrm{F}} / R_{\mathrm{P}}}$

$$
\begin{equation*}
\text { and } P_{\mathrm{CB} 2}\left(t_{\mathrm{I2}}^{(0)}\right)=P_{\mathrm{I}}-P_{\mathrm{J}}+P_{\mathrm{J}}\left(\frac{P_{\mathrm{I}}-P_{\mathrm{OTH} 2}}{P_{\mathrm{I}}}\right)^{a} \tag{S26}
\end{equation*}
$$

V. Convergence of $P_{\mathrm{CB} 1}\left(t_{\mathrm{II}}^{(k)}\right)$ and $P_{\mathrm{CB} 2}\left(t_{12}^{(k)}\right)$

Fig. S4. $P_{\mathrm{CB} n}\left(t_{\mathrm{I} n}^{(k)}\right)$ converges at $\mathrm{k}=3$. Here, P_{I} and P_{O} are 3.7 and -8.5 kPa , respectively, and R_{F} and R_{P} are 1×10^{13} and $5 \times 10^{13} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-5}$, respectively.

VI. Closed threshold pressure

We obtained the closed threshold pressures of valve $m\left(P_{\mathrm{CTH} m}\right)$ with working oscillators. To obtain $P_{\mathrm{CTH} m}$ for Figs. 4 and 5, we used $R_{\mathrm{P}}=6.1 \times 10^{13} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{5}$ and $P_{\mathrm{I}}=3.7 \mathrm{kPa} . R_{\mathrm{F}}$ and P_{O} are variables. For example, when R_{F} is $2.4 \times 10^{12} \mathrm{~N} \mathrm{~s} / \mathrm{m}^{5}$ and P_{O} was increased from -8.5 to -3.3 kPa , the oscillation stopped at $P_{\mathrm{O}}=-3.3 \mathrm{kPa}$ (Figs. S2a and S 2 b). As P_{O} increased, $P_{\mathrm{CB} n}\left(\mathrm{t}_{\mathrm{I} n}{ }^{(k)}\right)$ decreased and the condition of eqn (4) in the main text was not satisfied at $P_{\mathrm{O}}=-3.3 \mathrm{kPa}$. At such a critical $P_{\mathrm{O}}, P_{\mathrm{CB} n}\left(t_{\mathrm{I} n}{ }^{(k)}\right)$ is equal to $-P_{\mathrm{CT} m}+P_{\mathrm{I}}$. This can be rewritten as $P_{\mathrm{CT} n}=-P_{\mathrm{CB} n}\left(t_{\mathrm{I} n}{ }^{(k)}\right)+P_{\mathrm{I}}$. Here, $P_{\mathrm{CB} n}\left(t_{\mathrm{I} n}{ }^{(k)}\right)$ is obtained from eqn (2) in the main text, and k is ≥ 3. As we changed R_{F}, calibration curves of $P_{\mathrm{CTH} m}$ for Figs. 3 and 4 were obtained, as shown in Fig. S5c, where $P_{\mathrm{CTH} 1}=$ $-418.7 \ln \left(R_{\mathrm{F}}\right)+9372.5$ and $P_{\mathrm{CTH} 2}=-416.9 \ln \left(R_{\mathrm{F}}\right)+9086.6$.

To obtain $P_{\text {CTH } m}$ for Fig. 5, we used $R_{\mathrm{P}}=6.1 \times 10^{13}$ and $R_{\mathrm{F}}=2.4 \times 10^{12} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-5} . P_{\mathrm{I}}$ and P_{O} are variables. Figure S5d shows the calibration curves: $P_{\mathrm{CTH} 1}=0.3371 P_{\mathrm{O}}-1057.9$ and $P_{\mathrm{CTH} 2}=$ $0.3412 P_{\mathrm{O}}-1261.1$.

Fig. S5. Measurement of closed threshold pressure. (a and b) Pressure profiles of $P_{\mathrm{CT} m}$. P_{O} is -8.5 kPa in (a) and -3.3 kPa in (b). (c) Calibration curves of $P_{\mathrm{CTH} n}$ with respect to R_{F}. (d) Calibration curves of $P_{\mathrm{CTH} m}$ with respect to P_{O}. The black and red lines correspond to valves 1 and 2 , respectively, in (c) and (d).

