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I. Open condition of the valve and its threshold pressure

The open condition of valve m is . Because PVTm = PI and PVBm = PCBn, the VT VB OTHm m mP P P 

open condition is rewritten as . We measured the open threshold pressure of CB I OTHn mP P P 

valve m (m = 1, 2) with the oscillator. To obtain POTm, we measured PVTm, PVBm, and PCTm of the 

oscillator with pressure sensors (PX309-015G5V, Omega Eng). We maintained PVTm at 3.7 kPa 

and decreased PVBm. At the moment valve m opened, PCTm rose rapidly (Fig. S1a). 

Fig. S1. Measurement of open threshold pressure. (a) Pressure profiles of PVB and PCT. (b to e) 

Calibration curves of POTHn with respect to PI. RF is 3.2  1011, 1.2  1012, 2.5  1013, and 1.3  

1015 N s m-5 from (b) to (e), respectively. The blue and red lines correspond to valves 1 and 2, 

respectively.
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At this time, we obtained POTHm from . Figures S1b to S1e show the calibration OT VT VBm m mP P P 

curves of POTHm with respect to PVTm (=PI) under different RF. From the curves of Figs. S1b to 

S1e, we obtained POTH1 = 341.37 log10(RF) + 7428.40 and POTH2 = 298.02 log10(RF) + 6683.15 

at PI =3.7 kPa, and applied them to Figs. 4 and 5 in the main text. The unit of POTH1 and POTH2 is 

Pa.

II. Theoretical derivation of equations for PCBn and PCTn

One oscillation period includes the sequential open-process of the two valves. At the kth 

oscillation period (k = 0, 1, 2…), valve 1 opens for and then valve 2 opens for ( ) ( )
I1 F1

k kt t t 

. Figre S2 shows the pressure profiles of PCT1, PCB1, and PCB2 at the kth period. To ( ) ( )
I2 F2

k kt t t 

derive equations, we used the circuit diagram that depicts the fluidic connection at the state when 

valve 1 is open and valve 2 is closed (Fig. S3).

Fig. S2. Pressure profiles of PCT1, PCB1, and PCB2 at the kth oscillation period.
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Fig. S3. For the state when valve 1 is open, the relation between PCT1 and PCB1 is obtained in (a) 

and the relation between PCT2 and PCB2 is obtained in (b).

While valve 1 is open,

. (S1)CT1 IP P

From Fig. S3a, we obtain

. (S2)CB1
1 CT1 CB1

P1

0( ) PdC P P
dt R


 

By the initial condition of PCB1 at , PCB1(t) is( )
I1

kt

. (S3)

( )
I1

1 P1( )
CB1 CB1 I1( ) ( )

kt t
C RkP t P t e






From Fig. S3b, we obtain

. (S4)CB2 CT2 J
2 CB2 CT2

P2 F2

0 ( )P P PdC P P
R dt R
 

  

After removing PCT2 in eqn (S4),

. (S5)F2
CB2 CB2

P2 2 P2

1( 1)R d P P
R dt C R

  

By the initial condition of PCB2 at , eqn (S5) is( )
I1

kt

. (S6)

( )
I1

2 F2 P2( )( )
CB2 CB2 I1( ) ( )

kt t
C R RkP t P t e





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Then from eqn (S4),

. (S7)F2
CT2 J CB2

P2

( ) ( )RP t P P t
R

 

The equations for the open state of valve 2 can be derived in the same manner. Table S1 

summarizes equations for the changes of pressures and duration times of each valve’s openings.

Table S1. Equations at the open state of each valve.

Valve 1 open state: ( ) ( )
i1 f1

k kt t t   Valve 2 open state: ( ) ( )
i2 f2

k kt t t 

                   (S1)CT1 IP P

          (S3)

( )
I1

1 P1( )
CB1 CB1 I1( ) ( )

kt t
C RkP t P t e






   (S6)

( )
I1

2 F2 P2( )( )
CB2 CB2 I1( ) ( )

kt t
C R RkP t P t e






       
(S7)F2

CT2 J CB2
P2

( ) ( )RP t P P t
R

 

                   (S8)CT2 IP P

       (S9)

( )
I2

2 P2( )
CB2 CB2 I2( ) ( )

kt t
C RkP t P t e






   (S10)

( )
I2

1 F1 P1( )( )
CB1 CB1 I2( ) ( )

kt t
C R RkP t P t e






       
(S11)F1

CT1 J CB1
P1

( ) ( )RP t P P t
R

 

III. Theoretical derivation of equations of PCBn at times  and ( )
I

k
nt ( )

F
k
nt

We derive equations for , , , and . The open condition of ( )
CB1 I2( )kP t ( )

CB1 F1( )kP t ( )
CB2 I1( )kP t ( )

CB2 F2( )kP t

valve 2 is PVT2 – PVB2 > POTH2. At the moment valve 2 is opened in the kth period, the condition is

,( ) ( )
VT2 F1 VB2 F1 OTH2( ) ( )k kP t P t P 

with

 and . (S12)( )
VT2 F1 I( )kP t P ( ) ( )

VB2 F1 CB1 F1( ) ( )k kP t P t

Thus,

. (S13)( )
CB1 F1 I OTH2( )kP t P P 
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From the continuity of pressure differences across capacitor 1,

. (S14)( ) ( ) ( ) ( )
CT1 F1 CB1 F1 CT1 I2 CB1 I2( ) ( ) ( ) ( )k k k kP t P t P t P t  

From Eqs. (S1) and (S13), eqn (S14) is

. (S15)( ) ( )
CT1 I2 CB1 I2 OTH2( ) ( )k kP t P t P 

When valve 2 opens, valve 1 is closed. From Fig. S2(a), we obtain:

. (S16)
( ) ( )

CB1 I2 CT1 I2 J

P1 F1

0 ( ) ( )k kP t P t P
R R

 


From Eqs. (S15) and (S16), we derive an equation for PCB1 at the moment valve 2 opens:

. (S17)( ) P1
CB1 I2 J OTH2

F1 P1

( ) ( )k RP t P P
R R

 


Similarly, at the moment valve 1 opens in the kth period, the condition of valve 1 is

. (S18)( )
CB2 F2 I OTH1( )kP t P P 

From the continuity of pressure differences across capacitor 2,

. (S19)( ) P2
CB2 I1 J OTH1

F2 P2

( ) ( )k RP t P P
R R

 


Table S2 summarizes the equations of PCBn at times and .( )
I

k
nt ( )

F
k
nt
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Table S2. Equations of PCBn at times  and .( )
I

k
nt ( )

F
k
nt

PCB1 PCB2

(S13)( )
CB1 F1 I OTH2( )kP t P P 

(S17)( ) P1
CB1 I2 J OTH2

F1 P1

( ) ( )k RP t P P
R R

 


(S18)( )
CB2 F2 I OTH1( )kP t P P 

(S19)( ) P2
CB2 I1 J OTH1

F2 P2

( ) ( )k RP t P P
R R

 


IV. Theoretical derivation of equations for fluidic switching periods

From eqn (S3), we obtain the duration time of the opening of valve 1:

. (S20)
( )

( ) ( ) ( ) CB1 I1
1 F1 I1 1 P1 ( )

CB1 F1

( )ln
( )

k
k k k

k

P tT t t C R
P t
 

    
 

Similarly, the duration time of the opening of valve 2 can be written as

. (S21)
( )

( ) ( ) ( ) CB2 I2
2 F2 I2 2 P2 ( )

CB2 F2

( )ln
( )

k
k k k

k

P tT t t C R
P t
 

    
 

The kth switching period of the two valves is . Equations (S20) and (S21) show ( ) ( ) ( )
1 2

k k kT T T 

that T(k) includes , , , and . Because we obtained  
( )

CB1 I1( )kP t ( )
CB1 F1( )kP t ( )

CB2 I2( )kP t ( )
CB2 F2( )kP t ( )

CB1 F1( )kP t

and  (Table S2), we need  and  for T(k).( )
CB2 F2( )kP t ( )

CB1 I1( )kP t ( )
CB2 I2( )kP t

At k = 0, we assume valve 1 opens and valve 2 closes. Thus,

. (S22)(0) (0)
CB1 I1 CT1 I1 I( ) ( )P t P t P 

From eqn (S4),

. (S23)(0) (0) P2
CB2 I1 CT2 I1 J

F2 P2

( ) ( ) RP t P t P
R R

 


From Eqs. (S13), (S20), and (S22), the duration time of valve 1 at the 0th period is
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. (S24)(0) (0) (0) I
1 F1 I1 1 P1

I OTH2

ln PT t t C R
P P
 

     

When valve 2 opens, the continuity of pressure differences across capacitor 2 should be met:

. (S25)(0) (0) (0) (0)
CT2 F1 CB2 F1 CT2 I2 CB2 I2( ) ( ) ( ) ( )P t P t P t P t  

Applying Eqs. (S6)–(S8), and (S24) to eqn (S25), we obtain PCB1 at the moment valve 2 opens in 

the 0th period:

, (S26)
1

(0) I OTH2
CB2 I2 I J J

I

( )
a

P PP t P P P
P

 
    

 

with

. (S27)1 P1
1

2 F2 P2( )
C Ra

C R R




At k  1, we can obtain  and .( )
CB1 I1( )kP t ( )

CB2 I2( )kP t

At the moment valve 1 opens in the kth period, the continuity condition of pressure difference 

across capacitor 1 is

. (S28)( 1) ( 1) ( ) ( )
CT1 F2 CB1 F2 CT1 I1 CB1 I1( ) ( ) ( ) ( )k k k kP t P t P t P t   

From eqn (S10) and (S17),

. (S29)
( 1) ( 1)
F2 I2

1 F1 P1( )( 1) P1
CB1 F2 J OTH2

F1 P1

( ) ( )
k kt t
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R R

 


  


From eqns (S18) and (S21), eqn (S29) is

(S30)
2

( 1) I OTH1P1
CB1 F2 J OTH2 ( 1)

F1 P1 CB2 I2

( ) ( )
( )

a
k

k

P PRP t P P
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


 
     

with

. (S31)2 P2
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From eqn (S11),

. (S32)( 1) ( 1) ( 1)F1
CT1 F2 CB1 F2 J CB1 F2

P1

( ) ( ) 1 ( )k k kRP t P t P P t
R

   
    

 

Applying eqns. (S1), (S30), and (S31) to eqn (S28), we obtain:

. (S33)
2

( ) I OTH1
CB1 I1 I J J OTH2 ( 1)

CB2 I2

( ) ( )
( )

a
k

k

P PP t P P P P
P t 

 
     

 

Similarly, we can get

. (S34)
1

( ) I OTH2
CB2 I2 I J J OTH1 ( )

CB1 I1

( ) ( )
( )

a
k

k

P PP t P P P P
P t

 
     

 

We used C1 = C2, RF1 = RF2, and RP1 = RP2 in the experiment, and . Thus, the ( ) ( ) ( )
1 2

k k kT T T 

final equations for the period are summarized in Table S3.

Table S3. Theoretical equations for period and related pressures

               
(S13, S18, S20, S21)

   
  
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a
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k
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 
     
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     

 

with 

                                    

(S27, S31)
F P

1
1 /

a
R R




and 
                      

(S26)(0) I OTH2
CB2 I2 I J J

I

( )
a

P PP t P P P
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 
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 
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V. Convergence of  and ( )
CB1 I1( )kP t ( )

CB2 I2( )kP t

Fig. S4.  converges at k = 3. Here, PI and PO are 3.7 and 8.5 kPa, respectively, and RF ( )
CB I( )k

n nP t

and RP are 1  1013 and 5  1013 N s m-5, respectively.

VI. Closed threshold pressure

We obtained the closed threshold pressures of valve m (PCTHm) with working oscillators. To 

obtain PCTHm for Figs. 4 and 5, we used RP = 6.1  1013 N s / m5 and PI = 3.7 kPa. RF and PO are 

variables. For example, when RF is 2.4  1012 N s / m5 and PO was increased from 8.5 to 3.3 

kPa, the oscillation stopped at PO = 3.3 kPa (Figs. S2a and S2b). As PO increased,  ( )
CB I( )k

n nP t

decreased and the condition of eqn (4) in the main text was not satisfied at PO= 3.3 kPa. At such 

a critical PO,  is equal to PCTm + PI. This can be rewritten as . ( )
CB I( )k

n nP t ( )
CT CB I I( )k

n n nP P t P  

Here,  is obtained from eqn (2) in the main text, and k is  3. As we changed RF, ( )
CB I( )k

n nP t

calibration curves of PCTHm for Figs. 3 and 4 were obtained, as shown in Fig. S5c, where PCTH1 = 

418.7ln(RF) + 9372.5 and PCTH2= 416.9ln(RF) + 9086.6.



S10

To obtain PCTHm for Fig. 5, we used RP = 6.1  1013 and RF = 2.4  1012 N s m-5. PI and PO are 

variables. Figure S5d shows the calibration curves: PCTH1 = 0.3371 PO  1057.9 and PCTH2 = 

0.3412 PO  1261.1.

Fig. S5. Measurement of closed threshold pressure. (a and b) Pressure profiles of PCTm. PO is 8.5 

kPa in (a) and 3.3 kPa in (b). (c) Calibration curves of PCTHn with respect to RF. (d) Calibration 

curves of PCTHm with respect to PO. The black and red lines correspond to valves 1 and 2, 

respectively, in (c) and (d).


