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I. Open condition of the valve and its threshold pressure

The open condition of valve m is Py, — Py, > Fory, - Because Pyr,, = Py and Pyg, = Pcp,, the
open condition is rewritten as F.,, <F — By, - We measured the open threshold pressure of

valve m (m = 1, 2) with the oscillator. To obtain Pqr,,, we measured Pyr,,, Pvgn, and Pcr, of the
oscillator with pressure sensors (PX309-015G5V, Omega Eng). We maintained Pyr,, at 3.7 kPa

and decreased Pyg,,. At the moment valve m opened, Pcr,, rose rapidly (Fig. S1a).
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Fig. S1. Measurement of open threshold pressure. (a) Pressure profiles of Pyg and Pcr. (b to €)
Calibration curves of Pory, with respect to Pr. Rp is 3.2 x 1011, 1.2 x 10'2, 2.5 x 103, and 1.3 x
1015 N s m™ from (b) to (e), respectively. The blue and red lines correspond to valves 1 and 2,

respectively.
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At this time, we obtained Pory,, from Ry, = By, — Bg,, - Figures S1b to Sle show the calibration

curves of Pory, with respect to Pyr,, (=P;) under different Rg. From the curves of Figs. S1b to
Sle, we obtained POTH] =-341.37 IOglo(RF) + 7428.40 and POTH2 =-298.02 IOglo(RF) + 6683.15
at P; =3.7 kPa, and applied them to Figs. 4 and 5 in the main text. The unit of Pory; and Poryp 18

Pa.

I1. Theoretical derivation of equations for Pcg, and Pcr,

One oscillation period includes the sequential open-process of the two valves. At the k™

oscillation period (kK = 0, 1, 2...), valve 1 opens fortl(lk ) Stét;’f) and then valve 2 opens for

tl(zk V<1< tg). Figre S2 shows the pressure profiles of Pcry, Pcpi, and Pcp, at the k&M period. To

derive equations, we used the circuit diagram that depicts the fluidic connection at the state when

valve 1 is open and valve 2 is closed (Fig. S3).
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Fig. S2. Pressure profiles of Pcry, Pcpy, and Pcg, at the & oscillation period.
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Fig. S3. For the state when valve 1 is open, the relation between Pcr; and Pcg; is obtained in (a)

and the relation between Pcr; and Pcg, is obtained in (b).

While valve 1 is open,
P =H. (S1)

From Fig. S3a, we obtain

d P, -0
C,— (P —Py)=—"8—. S2
1 dt ( CT1 CBI) RPI ( )
By the initial condition of Pcg; at tl(lk ) , Pcgi(?) 1s
)
B () = ])CBl(tl(lk))e e (S3)
From Fig. S3b, we obtain
0-— Pcsz d PCT2 — PJ
—===C,—(Py, —Pp,)=—""—. S4
RPZ 2 dt( CB2 CT2) RF2 ( )
After removing Pct, in eqn (S4),
R, d 1
—(—=+1)—~P,,=—PF.,. S5
(RP2 ) dt CB2 CZRPZ CB2 ( )
By the initial condition of Pcg; at tl(lk ) eqn (S5) is
)
Fog, (t) = Beg, (tl(lk))e ) (56)
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Then from eqn (S4),

R
PCT2(t):R _R_szcsz(t)- (S7)

P2
The equations for the open state of valve 2 can be derived in the same manner. Table S1

summarizes equations for the changes of pressures and duration times of each valve’s openings.

Table S1. Equations at the open state of each valve.

Valve 1 open state: ti(lk) <t< tg‘) Valve 2 open state: tl(zk) <t< t(k)
PCTl = R (S1) PCTz = PI (S8)
-t -1y
P (£) = Py, (11 )e ™ (S3) P (1) = By (£ )e (S9)
=40 —1F)

Py (1) = P (11 )e 1210 (S6) Py (1) = Py () %0 (S10)

RF2 RFI
PCTZ(t):f)J - Pcsz(t) (S7) PCTl(t):RI PCBI(t) (Sll)

R,, R,

*)
tn

I1I. Theoretical derivation of equations of Pcg, at times t(f,)

and 7;

We derive equations for Py, (1)), Py (1), Py (1), and Py, (t5). The open condition of
valve 2 is Pyt, — Pypy > Porma. At the moment valve 2 is opened in the k" period, the condition is
VTZ(t(k)) VB2 (t(k)) POTHZ 2
with
Py (1) =B and Py, (6)) = Ry (1)) (S12)
Thus,

CBl(t(k) _PI _POTHZ' (813)
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From the continuity of pressure differences across capacitor 1,
Pory(t5y) = Fep (1) = Py (1) = P (1)
From Egs. (S1) and (S13), eqn (S14) is
Py (t5)) = P (") = Py -
When valve 2 opens, valve 1 is closed. From Fig. S2(a), we obtain:

O_PCBl(tI(Zk)) — PCTl(tI(Zk))_PJ )
RPI RFI

From Egs. (S15) and (S16), we derive an equation for Pcg; at the moment valve 2 opens:

R
P (t5))=—— (P, — Pyypp) -
CBI( 12 ) RFl +RP1 ( J OTH2)

Similarly, at the moment valve 1 opens in the k" period, the condition of valve 1 is
)y —
PCB2(tF2 ) - PI _POTHI :
From the continuity of pressure differences across capacitor 2,

R
¢(PJ _POTHI)'

P (tl(lk)) =
Ry, + Ry,

o

Table S2 summarizes the equations of Pcg, at times 7" and ¢ .
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Table S2. Equations of Pcg, at times ¢ and #.

Pcp Pcp)
CBl (t(k)) omz (SB) CBZ(t(k) Pl _POTHI (818)
CBl(t(k))_L(RI_POTHZ) (817) CB2(t(k))_L(BI_POTHI) (519)
RFl + RPI RF2 + sz
IV. Theoretical derivation of equations for fluidic switching periods
From eqn (S3), we obtain the duration time of the opening of valve 1:
7O — 0 _ 0 _ o R In { CBl(t(k))} (S20)
1 Fl 1l 1tp1 ()
CB] (t )
Similarly, the duration time of the opening of valve 2 can be written as
Q)
LY =ty —ty =C,Rp)In [ Pl )} (S21)

k
CB2 (t( ))

The k™ switching period of the two valves is T =T, + T, Equations (S20) and (S21) show

that 7® includes P, (2"), P (), Py, (t5)), and P, (#Y). Because we obtained P. (2.}

and P.,,(¢%) (Table S2), we need P, (¢}’) and P.,,(ty) for T,
At k=0, we assume valve 1 opens and valve 2 closes. Thus,
CBl (t(O)) f)CTl (I(O))

From eqn (S4),
R
CBz(t(O)) PCTz(t(O)) - ¢B :

RF2 + RPZ

From Egs. (S13), (S20), and (S22), the duration time of valve 1 at the 0™ period is
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P
T =4~ =GR, In {—} | .
1~ ‘ot

When valve 2 opens, the continuity of pressure differences across capacitor 2 should be met:

Pory (1)) = Pepy (1) = Py (1) = Py (8. (S25)

Applying Egs. (S6)—(S8), and (S24) to eqn (S25), we obtain Pcg; at the moment valve 2 opens in

the O™ period:
Py, (tY)=P P +P, [%] , (S26)
I
with
g —— G (S27)
CZ (RFZ + RP2 )

Atk > 1, we can obtain P (") and P, (t%)).

At the moment valve 1 opens in the & period, the continuity condition of pressure difference

across capacitor 1 is

Pop (t ) = P (555°") = Py (47) = Py (1) - (528)
From eqn (S10) and (S17),
R 5 ™"
CBl(t(k 1)) — = _:IR ([:} _POTHZ)e G (R +Rpy) (829)

F1 P1

From eqns (S18) and (S21), eqn (S29) is

R P-P., )
t(k Dy — Pl P_P ~ “OTHI_ S30
CBl( )= RFl +RP1 ( J OTHZ) CBZ(t(k D ( )
with
Ry, (S31)

a, =—————.
' C(R,+R,)
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From eqn (S11),
(k=1) (k1) RF] (k-1)
CTl(t ) Bl(t ) PJ - R +1|F CBl(t ) (832)
P1

Applying eqns. (S1), (S30), and (S31) to eqn (S28), we obtain:

11 Lo J ) (S33)

CBl(l(k)) P +(P THz)[—(kl)
CBz (1 )

Similarly, we can get
P-P
P, (t(k)) B—-P+(P - THI)[ (;21/3[; ] (S34)
CBl

We used C; = Cy, Rp; = Ry, and Rp; = Rp; in the experiment, and 7% =T + T, . Thus, the

final equations for the period are summarized in Table S3.

Table S3. Theoretical equations for period and related pressures

¢ 0 £.0
7™ =CR, In P (67 )P (1) (S13, 818, S20, S21)
( 1 OTHI)(})I_POTHZ)

B -F,
PCBl(tl(lk)) = R _PJ + (f} _POTHZ)[%j (833)
CBZ
PP |
R R (534
CBl
with g=— 1 (S27, S31)
1+R./R,
and Po (&)= R~ P+ P, (—PI —ons ] (826)
1
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V. Convergence of P (¢\") and P.,, (¢’
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Fig. S4. P, (¢{") converges at k = 3. Here, P; and Pg are 3.7 and —8.5 kPa, respectively, and Ry

and Rp are 1 x 103 and 5 x 103 N s m™, respectively.

VI. Closed threshold pressure

We obtained the closed threshold pressures of valve m (Pcry,) with working oscillators. To
obtain Pcry, for Figs. 4 and 5, we used Rp = 6.1 x 10> N s / m?® and P; = 3.7 kPa. Ry and Pg are
variables. For example, when Rr is 2.4 x 1012 N s / m’ and Py was increased from —8.5 to —3.3
kPa, the oscillation stopped at Po = —3.3 kPa (Figs. S2a and S2b). As Po increased, P., (¢,")
decreased and the condition of eqn (4) in the main text was not satisfied at Po= —3.3 kPa. At such
a critical Po, P., (t,)) is equal to —Pcr,, + Pi. This can be rewritten as Py, =—P.y, (1, + B.
Here, P, (t,*)) is obtained from eqn (2) in the main text, and k is > 3. As we changed Ry,

calibration curves of Pcry,, for Figs. 3 and 4 were obtained, as shown in Fig. S5c, where Pcry; =

—418711'1(R]:) +9372.5 and PCTHZZ —416911'1(R]:) +9086.6.
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To obtain Pcry,, for Fig. 5, we used Rp= 6.1 x 1013 and Rp=2.4 x 102 N s m™. P; and P are

variables. Figure S5d shows the calibration curves: Pcry; = 0.3371 Po — 1057.9 and Peryp =

0.3412 Po— 1261.1.
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Fig. S5. Measurement of closed threshold pressure. (a and b) Pressure profiles of Pcr,,. Po is —8.5

kPa in (a) and —3.3 kPa in (b). (c¢) Calibration curves of Pcry, with respect to Rg. (d) Calibration

curves of Pcry, with respect to Po The black and red lines correspond to valves 1 and 2,

respectively, in (¢) and (d).
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