Supporting Information

A benchtop capillary flow layer-by-layer (CF-LbL) platform for rapid assembly and screening of biodegradable nanolayered films

Ziye Dong,^{1,†} Ling Tang,^{2,†} Caroline C. Ahrens,¹ Zhenya Ding,¹ Vi Cao,¹ Steven Castleberry,³ Jiangtao Yan,^{2,*} Wei Li^{1,*}

¹ Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA

² Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China

³ AbbVie, North Chicago, IL 60064, USA

[†] These authors contributed equally to this work.

* Corresponding Authors: Jiangtao Yan (jtyan@tjh.tjmu.edu.cn), Wei Li (wei.li@ttu.edu)

Fig. S1. Shear stress of flows across the width of the microchannel and film thickness ($d = 200 \mu m$) under different flow rates. A thicker film thickness at Q= 0.1 mL/hr is probably due to insufficient washing time, which was kept the same for all flow rates.

Fig. S2. Shear stress of flows across the width of the microchannel and film thickness ($d = 800 \mu m$) under different flow rates.

Fig. S3. Shear stress of flows across the width of the microchannel and film thickness ($d = 1600 \mu m$) under different flow rates.

Fig. S4. Normalized fluorescent intensity of films before and after degradation. The highest intensity before degradation was used as reference.

Fig. S5. Effect of the film compositions on NIH-3T3-eGFP cells cultured on PARG/HA films.