## SUPPLEMENTARY FIGURE LEGENDS



**Supplemental Figure 1: Experimental overview.** A daily timeline of additions to the scaffolds (above the timeline) and assessments (below the timeline).



Supplemental Figure 2: Construction and seeding schematic for the metastatic LiverChip microphysiological system (adapted from Clark *et. al.* <sup>14</sup>). (A) The fully constructed LiverChip depicted within its docking station. (B) Aerial view of the top plate showing the 12 individual liver-units, the location where hepatic cells are seeded and micro-tissue forms. (C) Cells are directly seeded onto an imprinted scaffolding unit, which (D) comprises a layering of a scaffold on top of a 0.22  $\mu$ m PVDF filter, secured in place by a retaining ring. Note: for the hydrogel scaffolds, the PVDF filter is pre-attached. (E) The actual micro-tissue resides in multiple channels that approach the size of a liver lobule. Within these tissues, tumor cells may intravasate and a subset outgrow immediately, while another spontaneously undergo dormancy. Fluid flow up through the microtissue supports hepatic tissue development and provides a constant supply of re-oxygenated medium enabling prolonged culture).



Supplemental Figure 3: Acute phase proteins production following stimulation with LPS. Levels of acute phase proteins, A1AT and fibrinogen, were measured by ELISA on day 15 following stimulation with 1 µg/mL LPS for 24 hours (n = 2 donors in duplicate). Graphs depict absolute concentration (µg/mL) proteins produced by each patient donor. Significant differences were determined via non-parametric pairwise Wilcoxon rank sum tests (\*p<0.05).



Supplemental Figure 4: Hydrogel scaffolds provide physiological a more microenvironment that allows for improved recapitulation of dormancy. On day 3, hepatic tissue supported by hydrogel scaffolds was seeded with MDA-MB-231 cells expressing RFP. (A) Wells were seeded with 500 cells and complete scaffolds were imaged in the RFP channel (2x objective) and the percent of total area positive for RFP was calculated on day 7, 11, and 15 (n = 1 donors). (B) A relatively minor increase in breast cancer cells present in the metastatic niche after 12 days from 100 to 1000 cells/wells indicated the proliferative capacity to be either reduced or completely halted.

## SUPPLEMENTAL MATERIALS

|                              |             |        |                        | Assay Working<br>Range |       | Assay<br>Sensitivity | 5 PL Curve Fit Statistics |                    |                       |       |
|------------------------------|-------------|--------|------------------------|------------------------|-------|----------------------|---------------------------|--------------------|-----------------------|-------|
| Analytes                     | Alternate   | Bead   | Dilution<br>Factors    | LLoQ                   | ULoQ  | LoD                  | Residual<br>Variance      | Fit<br>Probability | Degrees of<br>Freedom | wSSE  |
|                              | Names       | Region |                        | (pg/                   | mL)   | (pg/mL)              |                           | -                  |                       | 1     |
| Human group I, 27-plex panel |             |        |                        |                        |       |                      |                           |                    |                       |       |
| IL-1β                        |             | 39     | 1.0                    | 0.5                    | 518   | 0.3                  | 0.55                      | 0.74               | 5                     | 2.75  |
| IL-1Ra                       |             | 25     | 1.0                    | 5.0                    | 4,557 | 4.5                  | 0.14                      | 0.98               | 5                     | 0.68  |
| IL-2                         |             | 38     | 1.0                    | 0.9                    | 1,041 | 1.2                  | 0.48                      | 0.79               | 5                     | 2.41  |
| IL-4                         |             | 52     | 1.0                    | 0.3                    | 279   | 0.1*                 | 0.63                      | 0.64               | 4                     | 2.52  |
| IL-5                         |             | 33     | 1.0                    | 1.5                    | 1,441 | 1.9                  | 0.70                      | 0.59               | 4                     | 2.80  |
| IL-6                         |             | 19     | 1.0, 0.06              | 2.4                    | 2,168 | 1.2                  | 0.78                      | 0.54               | 4                     | 3.13  |
| IL-7                         |             | 74     | 1.0                    | 0.8                    | 996   | 0.5                  | 1.20                      | 0.31               | 4                     | 4.82  |
| IL-8                         |             | 54     | 1.0, 0.06              | 2.8                    | 2,442 | 0.7                  | 0.82                      | 0.53               | 5                     | 4.12  |
| IL-9                         |             | 77     | 1.0                    | 1.2                    | 1,537 | 1.5                  | 0.61                      | 0.65               | 4                     | 2.45  |
| IL-10                        |             | 56     | 1.0                    | 2.2                    | 2,232 | 1.4                  | 0.57                      | 0.68               | 4                     | 2.29  |
| IL-12p70                     |             | 75     | 1.0                    | 2.6                    | 2,585 | 2.4                  | 0.23                      | 0.95               | 5                     | 1.16  |
| IL-13                        |             | 51     | 1.0                    | 0.5                    | 482   | 0.4                  | 0.60                      | 0.73               | 6                     | 3.62  |
| IL-15                        |             | 73     | 1.0                    | 1.5                    | 293   | 1.7                  | 0.35                      | 0.91               | 6                     | 2.12  |
| IL-17A                       |             | 76     | 1.0                    | 4.0                    | 1,838 | 4.0                  | 1.01                      | 0.41               | 5                     | 5.04  |
| Eotaxin                      |             | 43     | 1.0                    | 7.0                    | 1,667 | 3.5                  | 1.61                      | 0.19               | 3                     | 4.82  |
| Basic FGF                    |             | 44     | 1.0                    | 8.2                    | 1,038 | 3.8                  | 0.63                      | 0.70               | 6                     | 3.79  |
| G-CSF                        |             | 57     | 1.0                    | 2.5                    | 2,328 | 0.9                  | 0.65                      | 0.63               | 4                     | 2.60  |
| GM-CSF                       |             | 34     | 1.0                    | 2.9                    | 753   | 3.0                  | 0.45                      | 0.84               | 6                     | 2.71  |
| IFN-γ                        |             | 21     | 1.0                    | 4.0                    | 1,899 | 5.5                  | 1.08                      | 0.37               | 6                     | 6.48  |
| IP-10                        |             | 48     | 1.0,<br>0.25,<br>0.125 | 9.0                    | 2,185 | 7.1                  | 1.85                      | 0.12               | 4                     | 7.38  |
| MCP-1                        | MCAF        | 53     | 1.0                    | 1.5                    | 1,532 | 3.1                  | 0.40                      | 0.88               | 6                     | 2.43  |
| MIP-1α                       |             | 55     | 1.0                    | 0.0                    | 61    | 0.1                  | 0.40                      | 0.88               | 6                     | 2.39  |
| MIP-1β                       |             | 18     | 1.0                    | 1.3                    | 577   | 0.7                  | 0.30                      | 0.93               | 6                     | 1.83  |
| PDGF-BB                      |             | 47     | 1.0                    | 19.6                   | 1,602 | 2.4                  | 1.85                      | 0.12               | 5                     | 7.38  |
| RANTES                       |             | 37     | 1.0                    | 0.7                    | 1,041 | 2.4                  | 0.45                      | 0.84               | 6                     | 2.73  |
| TNF-α                        |             | 36     | 1.0                    | 4.0                    | 3,945 | 2.7                  | 1.33                      | 0.25               | 5                     | 6.64  |
| VEGF-A                       |             | 45     | 1.0                    | 1.8                    | 1,950 | 2.6                  | 0.21                      | 0.93               | 4                     | 0.84  |
| Chemokines, 40               | -plex panel | 10     | 1.0                    | 101 1                  |       |                      |                           | 0.00               |                       | 10.05 |
| 6Ckine                       | CCL21       | 12     | 1.0                    | 101.4                  | 9,849 | 9 53.7               | 1.81                      | 0.08               | /                     | 12.65 |

Supplemental Table S1. Assay performance characteristics and curve fit statistics using 5 parameter logistic (5 PL) regression of standards

## Clark et al Cancer Dormancy MPS and Inflammation

| BCA-1        | CXCL13        | 74  | 1.0               | 0.5   | 1,438  | 0.5  | 1.22 | 0.29 | 7 | 8.56  |
|--------------|---------------|-----|-------------------|-------|--------|------|------|------|---|-------|
| CTACK        | CCL27         | 72  | 1.0               | 8.7   | 4,754  | 4.0  | 1.08 | 0.37 | 7 | 7.58  |
| Eotaxin      | CCL11         | 43  | 1.0               | 8.3   | 542    | 7.7  | 4.03 | 0.00 | 5 | 20.13 |
| Eotaxin-2    | CCL24         | 30  | 1.0               | 9.1   | 1,555  | 28.0 | 0.94 | 0.45 | 5 | 4.71  |
| Eotaxin-3    | CCL26         | 65  | 1.0               | 11.2  | 1,031  | 8.1  | 0.79 | 0.56 | 5 | 3.95  |
| Fractalkine  | CX3CL1        | 77  | 1.0               | 14.1  | 11,432 | 5.0  | 1.79 | 0.10 | 6 | 10.76 |
| GCP-2        | CXCL6         | 15  | 1.0               | 6.1   | 2,409  | 11.4 | 1.23 | 0.28 | 7 | 8.61  |
| GM-CSF       |               | 34  | 1.0               | 18.2  | 2,113  | 9.9  | 1.78 | 0.31 | 6 | 10.67 |
| Gro-α        | CXCL1         | 61  | 1.0, 0.25         | 30.1  | 1,772  | 20.5 | 1.32 | 0.25 | 5 | 6.60  |
| Gro-β        | CXCL2         | 78  | 1.0, 0.25         | 12.4  | 4,659  | 23.2 | 1.02 | 0.41 | 7 | 7.17  |
| I-309        | CCL1          | 20  | 1.0               | 40.7  | 2,289  | 16.3 | 2.09 | 0.05 | 6 | 12.55 |
| IFN-γ        |               | 21  | 1.0               | 8.8   | 927    | 5.1  | 1.92 | 0.12 | 3 | 5.77  |
| IL-1β        |               | 39  | 1.0               | 4.8   | 585    | 0.1* | 2.41 | 0.03 | 6 | 14.44 |
| IL-2         |               | 38  | 1.0               | 5.6   | 3,445  | 3.8  | 086  | 0.53 | 7 | 6.04  |
| IL-4         |               | 52  | 1.0               | 19.6  | 608    | 19.7 | 0.77 | 0.51 | 3 | 2.31  |
| IL-6         |               | 19  | 1.0               | 0.9   | 2,246  | 0.9  | 0.89 | 0.51 | 7 | 6.25  |
| IL-8         | CXCL8         | 54  | 1.0               | 0.6   | 525    | 0.4  | 0.91 | 0.49 | 6 | 5.46  |
| IL-10        |               | 56  | 1.0               | 6.0   | 3,826  | 2.3  | 1.88 | 0.08 | 6 | 11.29 |
| IL-16        |               | 27  | 1.0               | 16.7  | 8,824  | 9.6  | 1.05 | 0.39 | 7 | 7.37  |
| IP-10        | CXCL10        | 48  | 1.0               | 5.8   | 5,040  | 3.6  | 1.21 | 0.30 | 6 | 7.25  |
| I-TAC        | CXCL11        | 25  | 1.0               | 1.1   | 227    | 0.3  | 1.03 | 0.41 | 7 | 7.22  |
| MCP-1        | CCL2          | 53  | 1.0               | 0.3   | 256    | 0.0  | 0.99 | 0.43 | 6 | 5.95  |
| MCP-2        | CCL8          | 57  | 1.0               | 0.3   | 1,162  | 0.2  | 1.38 | 0.21 | 7 | 9.65  |
| MCP-3        | CCL7          | 26  | 1.0               | 16.8  | 2,345  | 20.1 | 1.26 | 0.27 | 7 | 8.79  |
| MCP-4        | CCL13         | 28  | 1.0               | 1.4   | 214    | 2.8  | 0.84 | 0.54 | 6 | 5.01  |
| MDC          | CCL22         | 29  | 1.0               | 10.0  | 740    | 9.3  | 4.26 | 0.00 | 4 | 17.02 |
| MIF          |               | 35  | 1.0, 0.25         | 143.6 | 97,939 | 54.0 | 0.88 | 0.51 | 6 | 5.30  |
| MIG          | CXCL9         | 14  | 1.0               | 12.6  | 1,567  | 5.4  | 0.11 | 1.73 | 6 | 0.65  |
| MIP-1α       | CCL3          | 55  | 1.0               | 3.1   | 371    | 0.5  | 2.99 | 0.01 | 6 | 17.94 |
| MIP-1δ       | CCL15         | 66  | 1.0, 0.5,<br>0.25 | 35.0  | 1,223  | 8.4  | 1.74 | 0.11 | 6 | 10.45 |
| MIP-3α       | CCL20         | 62  | 1.0               | 3.9   | 1,739  | 0.9  | 0.52 | 0.82 | 7 | 3.63  |
| ΜΙΡ-3β       | CCL19         | 76  | 1.0               | 29.9  | 3,054  | 11.0 | 3.32 | 0.01 | 4 | 13.28 |
| MPIF-1       | CCL23         | 37  | 1.0               | 8.7   | 5,097  | 3.2  | 0.92 | 0.49 | 7 | 6.46  |
| SCYB16       | CXCL16        | 64  | 1.0               | 14.0  | 1,607  | 3.6  | 1.39 | 0.20 | 7 | 9.76  |
| SDF-1α+β     | CXCL12        | 22  | 1.0               | 42.8  | 2,342  | 28.6 | 1.03 | 0.40 | 7 | 7.24  |
| TARC         | CCL17         | 67  | 1.0               | 10.3  | 4,638  | 11.5 | 3.17 | 0.01 | 5 | 15.83 |
| TECK         | CCL25         | 46  | 1.0               | 70.9  | 32,589 | 14.1 | 1.00 | 0.43 | 7 | 6.97  |
| TNF-α        |               | 36  | 1.0               | 6.3   | 3,114  | 1.1  | 0.89 | 0.51 | 7 | 6.26  |
| Human Cancer | Panel 1, 16-p | lex |                   |       |        |      |      |      |   |       |
| sEGFR        | ErbB1,        | 15  | 1.0               | 6.2   | 7,475  | 7.9  | 0.99 | 0.41 | 9 | 3.94  |

## Clark et al Cancer Dormancy MPS and Inflammation

|                | EGFR1            |    |           |       |        |       |      |      |    |       |
|----------------|------------------|----|-----------|-------|--------|-------|------|------|----|-------|
| FGF-basic      | FGF2,            | 44 | 1.0       | 0.7   | 1,690  | 0.8   | 0.94 | 0.44 | 9  | 3.75  |
|                | BFGF             |    |           |       |        |       |      |      |    |       |
| Follistatin    | FSN              | 26 | 1.0       | 257.5 | 8,815  | 611.9 | 0.69 | 0.66 | 11 | 4.13  |
| G-CSF          |                  | 57 | 1.0       | 0.6   | 4,235  | 0.8   | 0.20 | 0.98 | 11 | 1.18  |
| HGF            | SF               | 62 | 1.0       | 17.3  | 9,391  | 2.4   | 0.22 | 0.95 | 10 | 1.10  |
| sHER-2/neu     | ErbB2            | 12 | 1.0       | 21.3  | 9,257  | 0.0   | 0.70 | 0.63 | 10 | 3.48  |
| sIL-6Rα        | CD126            | 19 | 1.0       | 2.0   | 3,842  | 0.7   | 0.24 | 0.96 | 11 | 1.45  |
| Leptin         |                  | 78 | 1.0       | 3.8   | 3,523  | 4.6   | 0.93 | 0.47 | 11 | 5.56  |
| Osteopontin    | OPN              | 77 | 0.25      | 12.8  | 18,611 | 18.8  | 0.19 | 0.98 | 11 | 1.16  |
| PDGF-AB/BB     |                  | 47 | 1.0       | 15.2  | 8,809  | 6.4   | 0.58 | 0.75 | 11 | 3.45  |
| PECAM-1        | CD31             | 46 | 1.0       | 39.3  | 4,911  | 19.0  | 0.70 | 0.65 | 11 | 4.20  |
| Prolactin      | PRL              | 52 | 1.0       | 92.7  | 33,160 | 33.0  | 0.27 | 0.95 | 11 | 1.63  |
| SCF            | KL1              | 65 | 1.0       | 1.3   | 2,682  | 6.8   | 0.27 | 0.95 | 11 | 1.64  |
| sTIE-2         | CD202b           | 64 | 1.0       | 8.2   | 65,521 | 14.0  | 0.17 | 0.98 | 11 | 1.02  |
| sVEGFR-1       | FLT1             | 76 | 1.0       | 246.1 | 9,174  | 96.5  | 0.36 | 0.91 | 11 | 2.14  |
| sVEGFR-2       | KDR, FLK1        | 45 | 1.0       | 6.4   | 64,137 | 9.4   | 0.68 | 0.64 | 10 | 3.42  |
| Human Cancer I | Panel 2, 18-plex | x  |           |       |        |       |      |      |    |       |
| Angiopoietin-2 |                  | 47 | 1.0       | 43.0  | 23,300 | 89.4  | 2.35 | 0.04 | 10 | 11.76 |
| sCD40L         | TRAP             | 29 | 1.0       | 3.0   | 12,629 | 2.9   | 0.58 | 0.68 | 9  | 2.32  |
| EGF            |                  | 14 | 1.0       | 4.3   | 1,916  | 6.2   | 0.62 | 0.74 | 12 | 4.31  |
| Endoglin       | CD105            | 26 | 1.0       | 6.0   | 35,998 | 2.7   | 0.97 | 0.44 | 10 | 4.83  |
| sFASL          | CD95L,           | 35 | 1.0       | 104.1 | 17,607 | 82.3  | 0.97 | 0.45 | 12 | 6.82  |
|                | APO-1L           |    |           |       |        |       |      |      |    |       |
| HB-EGF         |                  | 57 | 1.0       | 5.2   | 1,761  | 1.3   | 1.10 | 0.36 | 12 | 7.70  |
| IGFBP-1        |                  | 62 | 1.0, 0.25 | 3.9   | 18,984 | 18.7  | 0.41 | 0.90 | 12 | 2.85  |
| IL-6           |                  | 19 | 1.0       | 0.9   | 5,344  | 0.2   | 2.13 | 0.05 | 11 | 12.78 |
| IL-8           | CXCL8            | 54 | 1.0       | 0.4   | 2,212  | 0.1*  | 0.64 | 0.72 | 12 | 4.48  |
| IL-18          |                  | 42 | 1.0       | 1.5   | 10,529 | 0.1*  | 1.38 | 0.22 | 11 | 8.30  |
| PAI-1          | SERPINE1         | 61 | 0.25,     | 16.2  | 34,428 | 9.0   | 1.96 | 0.07 | 11 | 11.77 |
|                |                  |    | 0.125,    |       |        |       |      |      |    |       |
|                |                  |    | 0.03,     |       |        |       |      |      |    |       |
|                |                  |    | 0.01      |       |        |       |      |      |    |       |
| PLGF           | PGF              | 52 | 1.0       | 3.9   | 6,796  | 0.1*  | 1.29 | 0.26 | 10 | 6.47  |
| _TGF-α         |                  | 76 | 1.0       | 2.0   | 3,545  | 0.1*  | 0.91 | 0.50 | 12 | 6.38  |
| TNF-α          |                  | 36 | 1.0       | 3.3   | 4,967  | 0.1*  | 2.93 | 0.01 | 11 | 17.56 |
| uPA            | Urokinase        | 78 | 1.0       | 1.0   | 7,576  | 0.1*  | 1.21 | 0.29 | 12 | 8.46  |
| VEGF-A         | VPF              | 45 | 1.0       | 52.5  | 16,537 | 84.2  | 0.43 | 0.88 | 12 | 3.03  |
| VEGF-C         | Flt4 ligand      | 64 | 1.0       | 17.8  | 26,230 | 15.2  | 0.97 | 0.45 | 13 | 7.79  |
| VEGF-D         | FIGF             | 43 | 1.0       | 97.7  | 44,382 | 126.2 | 0.76 | 0.62 | 12 | 5.35  |

LLoQ and ULoQ are the lower and upper limits of quantification where measurements are both accurate and precise. LoD, the limit of detection, is determined by adding two standard deviations to background MFI (Median Fluorescence Intensity) then extrapolating its concentration from the standard curve. Curve fit statistics of standards were calculated using the 5 parameter logistic regression model. Curve fits adjust parameters to minimize weighted sum of squared errors, i.e., wSSE. Initial assessments of curve-fitting include the residual variance, as defined by wSSE divided by the number of degrees of freedom accounted for within the immunoassay. The number of degrees of freedom is calculated as the number of data points in the standard curve minus the number of parameters in the curve model, i.e., 5 PL regression model equates to five parameters. As the wSSE has been shown to obey a chi-square distribution with the number of degrees present in an assay, fit probability is a metric that evaluates the curve fit; 1 is indicative of a perfect fit and 0 denotes a lack thereof.