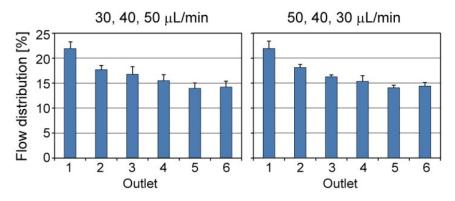
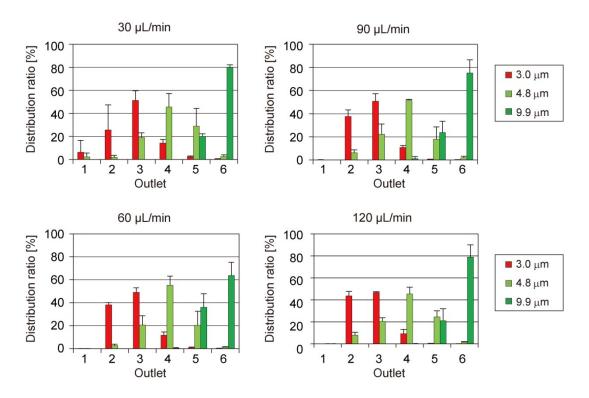
Supplementary Information

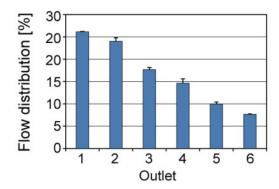
for


Slanted, asymmetric microfluidic lattices as size-selective sieves

for continuous particle/cell sorting


Masumi Yamada,^{a,*} Wataru Seko,^a Takuma Yanai,^a Kasumi Ninomiya^b,

and Minoru Sekia


 ^a Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
^b Asahi Kasei Corp., 2-1 Samejima, Fuji-shi, Shizuoka 416-8501, Japan.
*m-yamada@faculty.chiba-u.jp

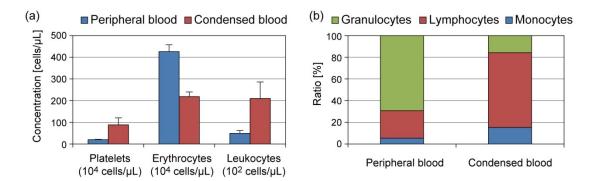

Figure S1. Distribution of volumetric flow rates to each outlet, when Microdevice A was used. The input flow rates from three inlets (from Inlets 1, 2, and 3) were changed as indicated.

Figure S2. Sorting results of standard particles using microdevice A, when the total input flow rate was changed from 30 to 120 μ L/min as indicated, whereas the ratio of the input flow rates was kept constant ($Q_1 : Q_2 : Q_3 = 3 : 4 : 5$). Each data represents the mean ± SD from 3 experimental results.

Figure S3. Distribution of volumetric flow rates to each outlet, when the microdevice shown in Figure 9 (a) was used. The input flow rates from Inlets 1, 2, and 3 were 10, 10, and 40 μ L/min, respectively.

Figure S4. Compositions of the prepared condensed blood samples in comparison with the native peripheral blood samples. (a) Concentrations of platelets, erythrocytes, and leukocytes, and (b) sub-population of leukocytes.