A vascularized organ-on-a-chip platform for large-scale drug screening applications

Duc T.T. Phan,*^a Xiaolin Wang,*^b Brianna M. Craver, ^a Agua Sobrino, ^a Da Zhao,^c Jerry C. Chen, ^a Lilian Y.N. Lee, ^a Steven C. George, ^d Abraham P. Lee, ‡ ^{c,e} and Christopher C.W. Hughes ‡ ^{a,c,f}

^aDepartment of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA.

^bDepartment of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China.

[°]Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

^d Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA.

^e Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA.

^f The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, CA 92697, USA.

* These authors contributed equally to this work.

‡ These authors contributed equally as senior authors and correspondents to this work.

Corresponding authors:

Christopher C.W. Hughes

Email: <u>cchughes@uci.edu</u>; Fax: +1 (949) 824-8551; Tel: +1 (949) 824-8771.

Abraham P. Lee

Email: aplee@uci.edu; Fax: +1 (949) 824-1727; Tel: +1 (949) 824-9691.

Supplemental Figure S1: Platform fabrication. (A) A customized master mold is fabricated using 2-part polyurethane liquid plastic and a micro-molding technique. (B) A PDMS device layer is replicated from the polyurethane master mold, and holes are punched for inlets and outlets. (C) A bottom view of a fully assembled platform. (D) A low-power view of 3 tissue chambers inside a single well.

Supplemental Figure S2: Finite element simulation of hydrostatic pressure and interstitial velocity flow in horizontal direction of a tissue chamber.

Supplemental Figure S3: 70 kDa-FITC dextran perfusion in 12 tissue units within a single platform. Scale bar = $100 \mu m$.

Fluorescent intensity of monolayer EC in 96-well plate

Supplemental Figure S4: Coefficient of variation (CV) of a standard 2D monoculture assay. Fluorescent-tagged endothelial cells were plated in 2 independent 96-well plates and allowed to adhere for 2 hours. Fluorescent intensity in each well was measured using a fluorescent plate reader and used to calculate the CV.

Supplemental Figure S5: 70 kDa-Rhodamine B dextran perfusion in 12 VMTs within a single platform. Scale bar = $100 \ \mu m$.

Supplemental Figure S6: Representative images before (T=0h) and after (T=72h) of drug treatment in the VMTs. Scale bar = 50 μ m.

Supplemental Figure S7: Blinded, primary drug screening at 1 μ M in 2D monoculture assay. Cell viability was quantified using XTT assay after 72 hours of drug treatment.

Supplemental Table S1: Sequence of qRT-PCR primers.

Gene Name	Sequence 5'→3'	
18S	CCCCGGCCGTCCCTCTTA	Forward
	CGCCCCCTCGATGCTCTTAG	Reverse
ICAM-1	CAGAGGTTGAACCCCCACAGT	Forward
	TCTGAGACCTCTGGCTTCGT	Reverse
E-selectin	CCGTCCGCCAGCCTCAGAAT	Forward
	TAGCCTCGCTCGGGGTTGGAC	Reverse
VCAM-1	CCATTTGACAGGCTGGAGAT	Forward
	TACTGTGGGCAGAGAATCCA	Reverse

Supplemental Table S2: Summary of drug compounds and their targets.

Compound	Target(s)	
Bortezomib	20S Proteosome	
Vincristine	Microtubule inhibitor	
CP-673451	Multi-tyrosine kinase inhibitor	
	(Concentration $\leq 1 \mu$ M: PDGFR- α/β , c-Kit, VEGFR1/2)	
Linifanib	Potent ATP-competitive VGEFR/PDGFR inhibitor	
Tamoxifen	Estrogen receptor antagonist	
Axitinib	Multi-tyrosine kinase inhibitor	
	(Concentration $\leq 1 \mu M$: VEGFR1/2/3, PDGFR- α/β)	
Sorafenib	Multi-tyrosine kinase inhibitor	
	(Concentration $\leq 1 \mu$ M: VEGFR2, Raf, PDGFR- β , c-Kit,	
	FGFR1)	
Isoprenaline	β-adrenergic receptor agonist	
Propranolol	β -adrenergic receptor inhibitor	
Mitomycin C	DNA synthesis inhibitor	
Gemcitabine	DNA synthesis inhibitor	
Vorinostat	HDAC inhibitor	

Source: Selleck Chemicals.