1	Supplementary information
2	A Microfluidic Circulatory System Integrated with
3	Capillary-Assisted Pressure Sensors
4 5	Yangfan Chen ¹ , Ho Nam Chan ¹ , Sean A. Michael ¹ , Yusheng Shen ² , Yin Chen ² , Qian Tian ¹ ,
6	Lu Huang ¹ and Hongkai Wu*,1,2
7	
8	
9	
10	¹ Department of Chemistry, The Hong Kong University of Science and Technology, Hong
11	Kong, China
12	² Division of Biomedical Engineering, The Hong Kong University of Science and Technology,
13	Hong Kong, China

14 *Corresponding author E-mail: chhkwu@ust.hk

16 Fig. S1: (a) Photograph of layer 5 shown in Fig. 1d and the white arrow indicates the 17 pillar in a check valve. (b) Photograph of layer 5 with plugs inserted to block the top 18 area of pillars and the white arrow indicates a 3D printed plug. Inset shows the bottom 19 of a 3D printed plug.

Fig. S2 Insertion of a capillary using a pre-designed guide channel (a-c) or a needle (dg). In (c), the capillary was fixed by epoxy glue, preventing the leakage. In (d), a needle
was used to house the capillary. In (g), the capillary was held tightly against PDMS
after withdraw of the needle. Scale bar: 500 μm.

Fig. S3 The linear regression showing high linearity ($\mathbb{R}^2 > 0.99$) between measured 27 pressure ($^{P_{measured}}$) and $1/L_2$.

- 29 Fig. S4 The illustration of integrating the biomimetic on-chip pumping system as a
- 30 heart-on-a-chip module on a "body-on-a-chip" platform.

Pressure (mmHg)	Normal ¹	Mimicked
LVP peak pressure	100 - 140	123
LVP end diastolic pressure	3 - 12	10
Systolic AP	90 - 119	115
Diastolic AP	60 - 79	69

31 Table S1 Comparison between normal and mimicked physiological pressure

Reference

33 1 M. E. Klingensmith, L. E. Chen, S. C. Glasgow, T. A. Goers and S. J. Melby,

The Washington Manual of Surgery, Washington University, 5th edn., 2008.

36

- 37 Fig. S5 Histograms showing the distributions of orientation angles. The flow direction
- 38 is defined as 0° .

39 Video S1 A demonstration of one-way loop in a simplified circulatory device. At first,
40 the device was filled with clear water and ports 1 and 8 were blocked (Fig. 1b). Next,
41 inlet 4 was connected to a reservoir containing red ink while outlet 5 was connected to
42 a waste container. By sequentially actuating the four pumping units, red ink was
43 extracted into the device and show the fluidic one-way loop. Red arrows show the
44 direction of flow.