Supplementary Information:

Tandem Emulsification for High-throughput Production of Double Emulsions

Maximilian L. Eggersdorfer^{1*}, Wenshan Zheng^{2*}, Saraf Nawar^{1*}, Cristina Mercandetti¹, Alessandro Ofner¹, Ivo Leibacher¹, Stephan Koehler¹, David A. Weitz^{1,3}

- 1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- 2. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- 3. Department of Physics, Harvard University, Cambridge, Massachusetts, USA

Fig. S1: Effect of flow rate on the droplet diameter with a fixed ratio of inner to outer flow rate of one. The broken lines are drawn as guides to the eye.

Fig. S2: Investigation of a) inner droplet diameter and b) fraction of monodisperse double emulsions as a function of the ratio between the inner and the middle flow rate for flow-focusing devices.

Fig. S3: Volume fraction of emulsions in each nozzle as a function to the normalized distance to inlet a) and corresponding images for straight b) and circular c) devices.