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Compiling a human protein interactome

The interactome we used in this study is from [1] and also enhanced by incorporating additional
data sources. Specifically, the protein-protein interactions are derived from several high-
throughput yeast-two-hybrid studies [2-4] and also combined with binary interactions from
IntAct and MINT databases [5, 6] and literature-curated interactions obtained by low throughput
experiments reported in the IntAct, MINT, HPRD, BioGRID databases [5-8], as well as the

CCSB Human Interactome (HI-2012, http://interactome.dfci.harvard.edu/H_sapiens/). CORUM,

literature curated protein interactions (LCI) from the CCSB, and experimentally determined
human protein complexes are also included in the set of protein-protein interactions [9, 10].
Protein-DNA regulatory interactions are taken from the TRANSFAC database [11], and kinase-
substrate interactions are obtained from the PhosphositePlus database [12]. Metabolic enzyme-
coupled interactions (two enzymes that share adjacent reactions) are derived from the KEGG and
BiGG databases as compiled previously [13]. In addition, protein interactions from 3D structural
prediction and signaling interactions are also included in the construction of the interactome [14,

15].


http://interactome.dfci.harvard.edu/H_sapiens/

Network analyses and implementation

In this study, most of the network analyses were performed using Python, with the assistance of a
Python package, NetworkX [16]. It contains many built-in network analysis algorithms, such as
shortest path algorithms, subgraph induction, and random graph generators, etc. We readily used
these algorithms for examining the proximity between drug targets and MI disease proteins.
Specifically, we created an empty graph under the Python environment after we imported

NetworkX:

>>> import networkx as nx

>>> G=nx.Graph ()

We then used functions G.add node () and G.add edge () to add nodes (proteins) and edges
(interactions) into the empty graph we created. Finally, the proximity between drug targets and
MI disease proteins was examined by using the function nx.shortest path () which returns
all the shortest paths between a source node (drug target) and a target node (disease protein). By
counting the number of pairs of drug targets and disease proteins that have shortest path lengths
of 1 and 2, we obtained the number of pairs of drug targets and disease proteins that have
interactions or have common neighbors. The average shortest path length can also be calculated

from the output of nx.shortest path().

In addition, we used a null model to assess the significance of emergent properties. The null
model keeps the human interactome unchanged and randomly selects 1,000 pairs of random

protein sets of the same size as MI-related drug targets and MI disease proteins respectively:

>>> import random as rd

>>> r=rd.randint (0,N-1)



where N is the number of proteins in the human interactome. The topological properties of
random protein sets are then compared with those of the sets of real drug targets and disease
proteins. Specifically, we calculated proximity measures (i.e., the number of interactions, the
number of protein pairs that have common neighbors, and the average shortest path length)
between each random drug target set and random disease protein set. The 1000 proximity values
from random protein sets form a null normal distribution after we fit the histograms using the
function normfit (data) in Matlab (Mathworks, Inc). The significance of emergent

properties of observations (i.e. P-value) was obtained by comparing them with null models:

>>> [muhat, sigmahat] = normfit (data)

>>> p=l-normcdf (x, muhat, sigmahat)

where “data” store the 1000 proximity values from random protein sets, and “x” is the

observed topological parameter.

To find modules densely connecting MIl-related drug targets and MI disease proteins, we
constructed a bipartite network using the interactions between them, and used the Louvain
method to maximize the modularity function Q [17, 18] defined for characterizing the modularity

of complex networks:
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where m is the total number of edges; the 4;; are the adjacency matrix elements; k; and k; are the
degrees of node i and node j, respectively; ¢; and ¢; are the module indices of node i and node j,
respectively; and ¢, the delta function, is equal to 1 if ¢; = ¢;, and is otherwise equal to 0. The

Louvain method was implemented by the Python package NetworkX:



>>> import community
>>> import networkx as nx

>>> C best = community.best partition(G)

where “G” is the graph for the bipartite network. This method works as hierarchical clustering

and returns network partitions at the different levels by using the function:

>>> dendo = community.generate dendogram(G)
>>> C i=community.partition at level (dendo, i)

>>> M=community.modularity(C best, G)

which allows us to examine the modularity value of partitions at different level and choose a best

partition.

Statistical tests and tools

When we assessed the biological relevance of DTD modules, we created a control for
significance, i.e., we randomly selected an interaction set with the same number of interactions
as the module and calculated the enrichment of drug pairs that have similar side effects or
therapeutic effects in the random modules. In addition, GO-based functional similarity of pairs
of MlI-related drug targets and MI disease proteins was quantified by GS2 (GO-based similarity
of gene sets) developed in [19]:

>>> from pyGS2 import get go graph

>>> tree = get go graph (open('go daily-termdb.obo-xml'))

>>> s=tree.GS2 ([genel, gene2])

where the GO annotation file go daily-termdb.obo-xml was download from the Gene
Ontology database [20]. Unless otherwise specified, when we assess the significance of

emergent properties of observations by comparing them with null models (random controls), all



P-values are obtained by fitting the histograms into normal distributions using the ‘normfit’

command in Matlab (Mathworks, Inc):

>>> [muhat, sigmahat] = normfit (data)

>>> p=l-normcdf (x, muhat, sigmahat)

where “data” store the values from random controls, and “x” is the observed topological

parameter.

The proximity between MI-related drug targets and MI disease proteins using the

interactions from STRING v10

In this study, we chose to use the conprehensive human intractome we compiled from different
databases. This interactome consists of diverse types of physical molecular interactions and has
recently been shown by us to have great potential in deciphering disease-disease [1]. One of the
main reasons that we used this specific interactome is because the majority of this consolidated
interactome is derived from unbiased experimental detection of physical protein-protein
interactions. There are many other protein interaction databases with higher coverage, such as
STRING [21] and HAPPI [22]. However, these databases contain a large number of predicted,
rather than experimentally ascertained, interactions, many of which are of uncertain statistical
confidence. While experimentally derived protein-protein interactions can be associated with
significant false positive ratios, predicted protein interactions can be even less reliable. Moreover,
only a subset of the interactions in STRING represents physical interactions; it contains largely
functional interactions predicted from gene expression correlations and other datasets. Since our
study focuses on identifying potential pathways underlying drug actions, predicted functional, as

compared to physical, interactions are sub-optimal for this purpose.



Nevertheless, although STRING contains many predicted physical and functional interactions, it
can still be used to assess the proximity of Ml-related drug targets to MI disease proteins. We,
therefore, downloaded human protein functional links (protein-protein interactions) from
STRING v10. Each protein-protein interaction has a confidence score in range [100,1000]. There
are 8,548,002 protein interactions for Homo sapiens. We used 900 as the confidence threshold
and obtained a set of 205,450 protein-protein interactions after we mapped the protein aliases to
HGNC gene names and removed redundancy in the data. We then examined the closeness
relationships between MI-related drug targets and MI disease genes using the interactions in this
subset of STRING v10 and found that the conclusions remain the same as those obtained using
our consolidated human interactome. Specifically, we identified 1,605 interactions between MI-
related drug targets and MI disease proteins, which is significantly greater than the number of
interactions between two random sets of the same size (P<1.0x10-9), as shown in Figure S6 (A).
Figure S6 (B) shows that there are significantly more pairs of Ml-related drug targets and MI
disease proteins with common neighbors than protein pairs from two random sets (P<1.0x10-19).
The average shortest path length between MI-related drug targets and MI disease proteins is 4.20,
significantly smaller than that between two random sets of the same size [P <1.0x10'® | Figure
S6 (C)]. We also assessed the closeness relationship between control drug targets and MI
disease proteins and the closeness relationships between Ml-related drug targets and control
disease proteins using the interactions from STRING v10. The results, shown in Figure S7 (A-C),
indicate that MI-related drug targets are significantly closer to MI disease proteins than control
drug targets. Figure S8 (A-C) shows that MI disease proteins are significantly closer to MI-

related drug targets than control disease proteins. This validation using another interaction



database further confirms the closeness relationships between Ml-related drug targets and MI

disease genes at a systems level.

Impact of module detection methods on the results

A network module is conceptually defined as a group of nodes in the network that are more
densely interconnected than to the rest of the network. There is not a strict mathematical
definition for network modules. It is not uncommon for two different module-finding techniques
to give different results, as each method has its own design principles based on network topology;
however, we expect the results should be largely concordant if the general principles upon which
the analysis is performed hold. Whether drug targets/disease proteins are included or excluded
from the modules depends on their connections to other drug targets/disease proteins. The
majority of drug targets and disease proteins would be included in the modules; only those with

peripheral connections may be excluded if we use a different module-finding method.

The differences in results from two module-finding techniques arise from two sources: method
design principles, and the intrinsic properties of the biological network under consideration. A
number of studies have shown that biological networks are not simply modular; rather, they
display strong multi-scale modularity or hierarchical modularity [23, 24]. Different network
partitions may have the same modularity values, which defines the problem of multi-solution
limitation common to all module-based network analyses. A module-detection method
incorporating biological knowledge may, therefore, be useful in reducing the impact of the multi-

solution problem.

The method we used in this study is the Louvain method for community detection. It is a widely

used greedy optimization method that maximizes the modularity function Q [17, 18]. To



examine the impact of module-finding techniques, we used simulated annealing to maximize
another modularity measure, modularity density, D [25, 26]. The results, summarized in Table
S3, give us more small modules: 20 modules with more than five proteins, 12 of them are 100%
contained within our large DTD modules, confirming the multiple-scale modularity mentioned
above. The majority of other modules are more than 85% contained within our DTD modules,
indicating the robustness of our DTD modules. Large modules provide a more complete overall
view of the pathways, and small modules give better resolution, but may be incomplete and,

thereby, lose some information.
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Figure S1. Ml-related drug targets are closer to MI disease proteins than control drug
targets in the interactome even after removing MI drug targets. (A) Compared to control
drug targets, Ml-related drug targets have greater overlap with MI disease proteins. (B)
Compared to control drug targets, Ml-related drug targets have more interactions with MI
disease proteins. (C) Compared to control drug targets, there are more pairs of Ml-related drug
targets and MI disease proteins that have common neighbors in the interactome. (D) Compared
to control drug targets, Ml-related drug targets have a smaller average shortest path length with

MI disease proteins.
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Figure S2. MI disease proteins are closer to MI drug targets than control disease proteins.

(A) Compared to control disease proteins, MI disease proteins have greater overlap with MI drug



targets. (B) Compared to control disease proteins, MI disease proteins have more interactions
with MI drug targets. (C) Compared to control disease proteins, there are more pairs of MI
disease proteins and MI drug targets that have common neighbors in the interactome. (D)
Compared to control disease proteins, MI disease proteins have a smaller average shortest path

length with MI drug targets in the interactome.




Figure S3. The modular bipartite network of Ml-related drug targets and MI disease
proteins. Nodes of the same color define a module. The nodes in gray are isolated (orphan)

nodes.
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Figure S4. The DTD modules. The bold text represents MI drugs or MI drug targets. The
blue nodes represent MI disease proteins, and the yellow nodes denote Ml-related drug targets.
The nodes with both colors are both drug targets and MI disease proteins. The nodes with only

labels (without node shapes) are drugs. MI drugs and MI drug targets are denoted in red.
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Table S1. Contingency table for the enrichment of module non-MI drugs with

cardiovascular effects, P-value = 1.9x103 (Chi-squared test). Non-module drugs have targets

in the interactome.

Cardiovascular effects No cardiovascular effects Total
Module drugs 133 91 224
Non-module drugs | 13 28 41

Total 146 119 265




Table S2. Contingency table for the enrichment of cardiovascular-associated proteins in

drug targets, P-value = 4.5x10-3 (Chi-squared test).

Cardiovascular proteins | No cardiovascular proteins | Total

Module targets 146 45 191

Non-module targets 63 42 105

Total 209 87 296




Table S3.

Comparison of DTD modules with modules derived by optimization of

modularity density D.
D module IDs | Module size | Overlap with DTD | D module IDs | Module size | Overlap with DTD
modules modules
D, 29 Module 2 (86.2%) Dy 15 Module 3(100%)
D, 11 Module 3(90.9%) Dy, 36 Module 9 (41.7%)
Module 10 (55.6%)
D; 17 Module 8 (52.9%) D3 13 Module 6 (100%)
Module 9 (29.4%)
D, 73 Module 2 (23.3%) Dy 7 Module 7 (100%)
Module 3 (19.2%)
Module 5 (30.1%)
Ds 26 Module 9 (100%) D s 9 Module 2 (88.9%)
Dy 37 Module 5 (97.3%) D s 6 Module 1 (100%)
D, 7 Module 9 (100%) D, 11 Module 7 (100%)
Dy 8 Module 11 (87.5%) | D1 10 Module 12 (100%)
Dy 11 Module 2 (100%) D 7 Module 11 (100%)
D 7 Module 4 (100%) Dy 8 Module 8 (100%)
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