

Electronic Supplementary Information for
“Estimation of Delays in Generalized Asynchronous Boolean
Networks”

Haimabati Das and Ritwik Kumar Layek

Department of Electronics and Electrical Communication Engineering,

Indian Institute of Technology Kharagpur, India, 721302

1 Coherent type 1 feed forward loop (C1 FFL)

The GABN model for coherent type 1 FFL with AND input logic is given by

$$\begin{cases} X(t) = S_x(t) \\ Y(t) = X(t - 0.92) \wedge X(t - 0.51) \\ Z(t) = X(t - 0.69) \wedge Y(t - 0.69) \end{cases} \quad (1)$$

and the GABN model for coherent type 1 FFL with OR input logic is given by

$$\begin{cases} X(t) = S_x(t) \\ Y(t) = X(t - 0.69) \\ Z(t) = X(t - 0.69) \vee Y(t - 0.69) \end{cases} \quad (2)$$

where S_x , represented by a unit rectangular pulse of duration six time units, is given by $S_x(t) = A * rect(\frac{t-5}{T})$ where $A=1$ and $T=6$.

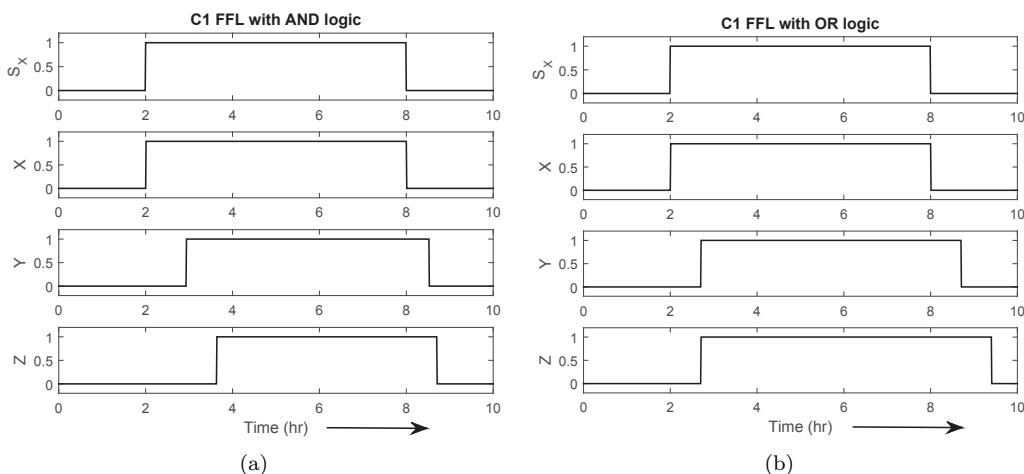


Figure 1: The simulation result of GABN model for coherent type 1 FFL with (a) AND input logic where $K_{yz} = 1.8$ and (b) OR input logic where $K_{yz} = 1.5$. $\alpha_x = \alpha_y = \alpha_z = 1$, $\beta_x = 1$, $\beta_y = \beta_z = 3$, $K_{xy} = K_{xz} = 0.5$.

2 Incoherent type 1 feed forward loop (I1 FFL)

The GABN model for incoherent type 1 FFL with AND input logic is given by

$$\begin{cases} X(t) &= S_x(t) \\ Y(t) &= X(t - 1.19) \wedge X(t - 0.36) \\ Z(t) &= X(t - 0.58) \wedge Y'(t - 0.58) \end{cases} \quad (3)$$

and the GABN model for incoherent type 1 FFL with OR input logic is given by

$$\begin{cases} X(t) &= S_x(t) \\ Y(t) &= X(t - 1.19) \wedge X(t - 0.36) \\ Z(t) &= X(t - 0.58) \vee Y'(t - 0.58) \end{cases} \quad (4)$$

where S_x , represented by a unit rectangular pulse of duration six time units, is given by $S_x(t) = A * \text{rect}(\frac{t-5}{T})$ where $A=1$ and $T=6$.

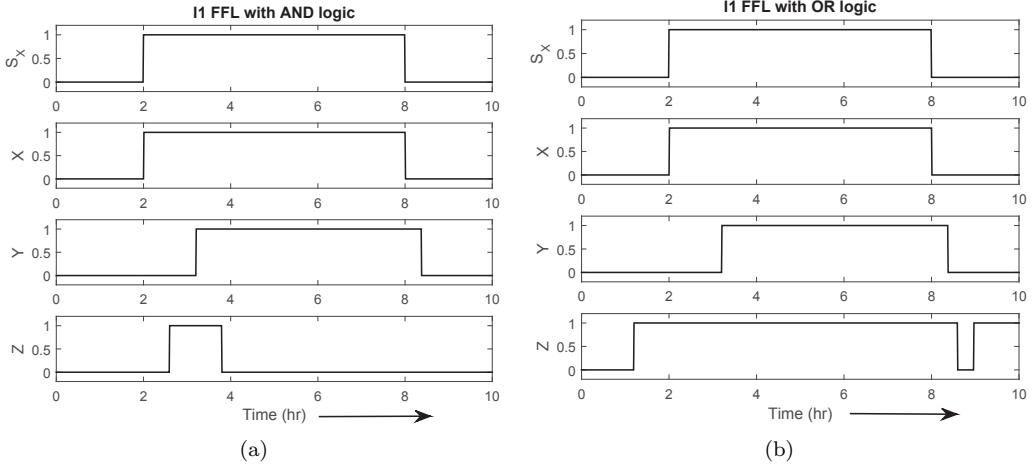


Figure 2: The simulation result of GABN model for incoherent type 1 FFL with (a) AND logic and (b) OR logic. $\alpha_x = \alpha_y = 1$, $\alpha_z = 1.2$, $\beta_x = 1$, $\beta_y = 3$, $\beta_z = 3.5$, $K_{yz} = 2.0948$, $K_{xy} = K_{xz} = 0.5$.

3 Multi-output feed forward loop

The GABN model for multi-output FFL with OR input logic is given by

$$\begin{cases} Y(t) &= X(t - 0.76) \vee X(t - 1.54) \\ Z_1(t) &= \{X(t - 0.69) \vee X(t - 1.35)\} \vee \{Y(t - 1.83) \wedge Y(t - 0.58)\} \\ Z_2(t) &= \{X(t - 0.98) \vee X(t - 1)\} \vee \{Y(t - 1.13) \wedge Y(t - 0.91)\} \\ Z_3(t) &= \{X(t - 1.19) \wedge X(t - 0.69)\} \vee \{Y(t - 0.69) \vee Y(t - 1.18)\} \end{cases} \quad (5)$$

and the GABN model for multi-output FFL with AND input logic is given by

$$\begin{cases} Y(t) &= X(t - 0.76) \vee X(t - 1.54) \\ Z_1(t) &= \{X(t - 0.69) \vee X(t - 1.35)\} \wedge \{Y(t - 1.83) \wedge Y(t - 0.58)\} \\ Z_2(t) &= \{X(t - 0.98) \vee X(t - 1.0)\} \wedge \{Y(t - 1.13) \wedge Y(t - 0.91)\} \\ Z_3(t) &= \{X(t - 1.19) \wedge X(t - 0.69)\} \wedge \{Y(t - 0.69) \vee Y(t - 1.18)\} \end{cases} \quad (6)$$

where X , represented by a unit rectangular pulse of duration four time units, is given by $X(t) = A * \text{rect}(\frac{t-5}{T})$ where $A=1$ and $T=4$.

4 Bifan

The GABN model for bifan with AND input logic is given by

$$\begin{cases} Z_1(t) &= \{X_1(t - 0.5) \vee X_1(t - 1.07)\} \wedge \{X_2(t - 1.19) \wedge X_2(t - 0.5)\} \\ Z_2(t) &= \{X_1(t - 1.16) \wedge X_1(t - 0.69)\} \wedge \{X_2(t - 0.69) \vee X_2(t - 1.25)\} \end{cases} \quad (7)$$

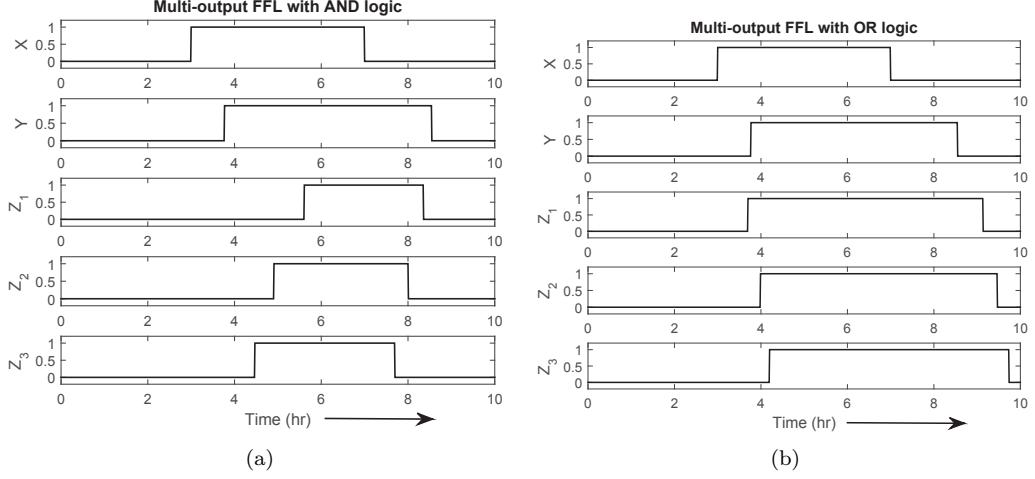


Figure 3: The simulation result of GABN model for multi-output FFL with (a) AND logic and (b) OR logic. $K_{xy} = 0.3$, $K_1 = 0.6$, $K_2 = 1.0$, $K_3 = 1.4$, $K'_1 = 2.6$, $K'_2 = 2.1$, $K'_3 = 1.6$, $\alpha_x = 1.1$, $\alpha_y = 1$, $\beta_x = 3.2$, $\beta_y = 3$, $\alpha_{z_1} = 1.2$, $\alpha_{z_2} = 1$, $\alpha_{z_3} = 1$, $\beta_{z_1} = 4$, $\beta_{z_2} = 3.1$, $\beta_{z_3} = 2.8$.

and the GABN model for bifan with OR input logic is given by

$$\begin{cases} Z_1(t) &= \{X_1(t-0.5) \vee X_1(t-1.07)\} \vee \{X_2(t-1.19) \wedge X_2(t-0.5)\} \\ Z_2(t) &= \{X_1(t-1.16) \wedge X_1(t-0.69)\} \vee \{X_2(t-0.69) \vee X_2(t-1.25)\} \end{cases} \quad (8)$$

Here X_1 , represented by a unit rectangular pulse of duration five time units, is given by $X_1(t) = A * \text{rect}(\frac{t-5}{T})$ where $A=1$ and $T=5$. X_2 , represented by a unit rectangular pulse of duration six time units, is given by $X_2(t) = A * \text{rect}(\frac{t-5}{T})$ where $A=1$ and $T=6$.

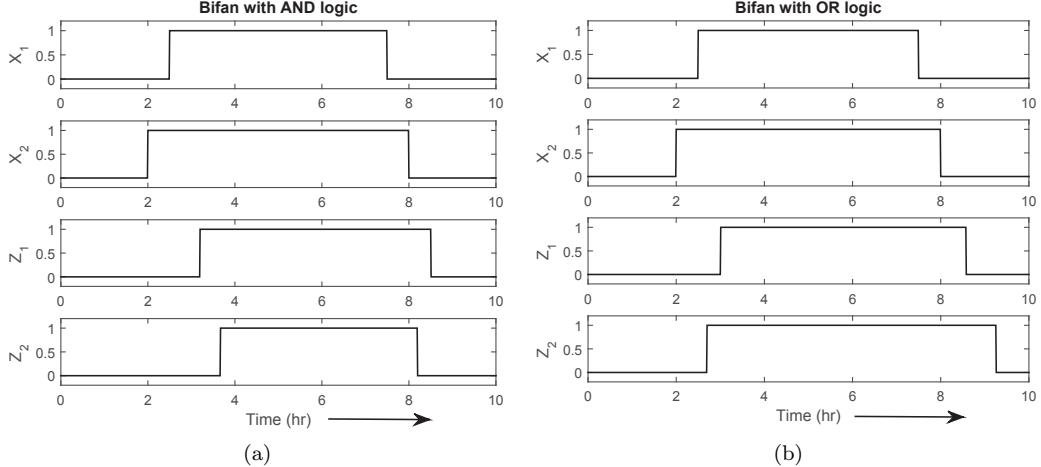


Figure 4: The simulation result of GABN model for bifan with (a) AND logic and (b) OR logic. $K_{11} = 0.9487$, $K_{12} = 1.8974$, $K_{21} = 2.0968$, $K_{22} = 1.1982$, $\alpha_{x_1} = 1.2$, $\alpha_{x_2} = 1$, $\beta_{x_1} = 3.8$, $\beta_{x_2} = 3$, $\alpha_{z_1} = 1$, $\beta_{z_1} = 2.8$, $\alpha_{z_2} = 1.4$, $\beta_{z_2} = 4.4$.

5 Transcription cascade

The GABN model for a cascade of activators is given by

$$\begin{cases} Y(t) &= X(t-0.69) \vee X(t-0.7) \\ Z(t) &= Y(t-0.58) \end{cases} \quad (9)$$

and the GABN model for a cascade of inhibitors is given by

$$\begin{cases} Y(t) &= X'(t-0.69) \\ Z(t) &= Y'(t-0.58) \end{cases} \quad (10)$$

where X , represented by a unit rectangular pulse of duration six time units, is given by $X(t) = A * rect(\frac{t-5}{T})$ where $A=1$ and $T=6$.

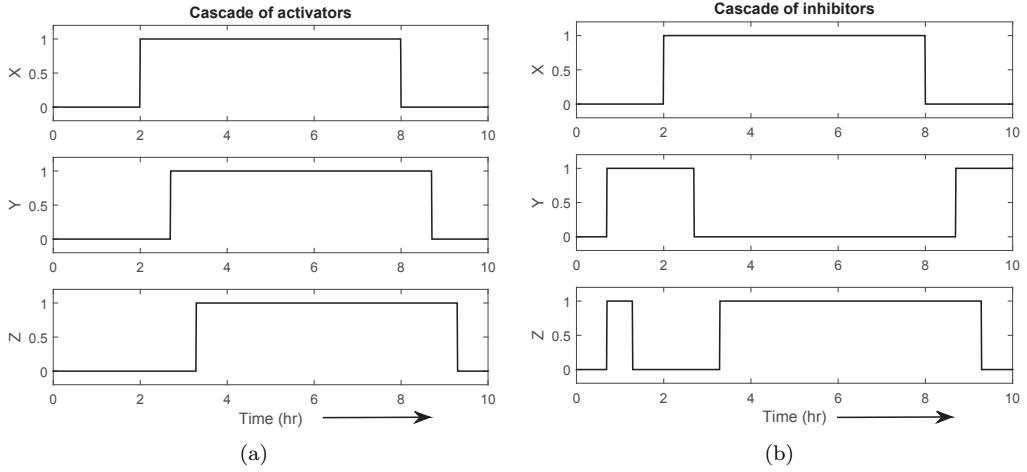


Figure 5: The simulation result of GABN model for a cascade of (a) activators with $K_{yz} = 1.495$ and (b) inhibitors with $K_{yz} = 1.5$. $K_{xy} = 1.16$, $\alpha_x = 1.1$, $\alpha_y = 1.0$, $\beta_x = 3.2$, $\beta_y = 3.0$, $\alpha_z = 1.2$, $\beta_z = 3.5$

6 Single input module

The GABN model for SIM network motif with three target genes is given by

$$\begin{cases} Z_1(t) &= X(t - 0.58) \vee X(t - 1.68) \\ Z_2(t) &= X(t - 0.9) \vee X(t - 1.1) \\ Z_3(t) &= X(t - 0.96) \wedge X(t - 0.5) \end{cases} \quad (11)$$

where X (same as S_x), represented by a unit rectangular pulse of duration six time units, is given by $X(t) = A * rect(\frac{t-5}{T})$ where $A=1$ and $T=6$.

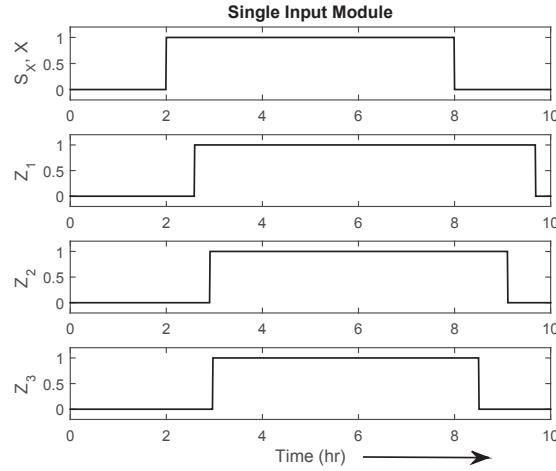


Figure 6: The simulation result of GABN model for SIM generating LIFO temporal order of gene expression. $K_1 = 0.5$, $K_2 = 1.0$, $K_3 = 1.5$, $\alpha_x = 1$, $\beta_x = 3.2$, $\alpha_{z_1} = 1.2$, $\beta_{z_1} = 3.8$, $\alpha_{z_2} = 1$, $\beta_{z_2} = 3$, $\alpha_{z_3} = 1.4$, $\beta_{z_3} = 3.6$.