Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016

Supporting Information for the manuscript:

Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity.

Yassir A. Ahmed,^{a,b} Edwin A. Yates,^a Diana J. Moss,^c Markus A. Loeven, ^a Sadaf-Ahmahni Hussain,^d Erhard Hohenester,^d Jeremy E. Turnbull, §^a and Andrew K. Powell, §^{a, e}

Contents:

Methodology. S2

Results. S3

References. S8

 ^a Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, UK
^b Department of Chemistry, Faculty of Science, King Faisal University, KSA
^c Department of Cellular and Molecular Physiology, University of Liverpool, UK
^d Department of Life Sciences, Imperial College London, UK

e. School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK

METHODOLOGY

Sequence alignment: Protein sequences were obtained from UniProt (http://www.uniprot.org) for dRobo (O44924), cRobo1 (F1NR30) and cRobo2 (A0A024B7I3). Amino acids corresponding to Ig1-5 (56-530, 29-502 and 29-506) and Ig1 (56-149, 29-125 and 29-125) for dRobo, cRobo1 and cRobo2, respectively were identified by entering UniProt IDs into the Prosite function in the ExPASy Bioinformatics Resource Portal (http://www.expasy.org/). Sequences were entered as pairs into the multiple sequence alignment programme PRALINE to generate alignments and calculate % identity (http://www.ibi.vu.nl/programs/PRALINEwww).

RESULTS

		Glucosamine (A)	Iduronate (I)
Polysaccharide	Disaccharide Repeat	A-1 A-2 A-3 A-4 A-5 A-6	I-1 I-2 I-3 I-4 I-5
Heparin	$I_{2S}A^{6S}{}_{NS}$	99.5 60.7 72.5 78.8 72.0 69.2	102.1 78.9 72.1 79.0 72.3
		5.42 3.31 3.69 3.79 4.05 4.30-4.42	5.23 4.37 4.22 4.14 4.82
2-ОН	$I_{2OH}A^{6S}{}_{NS}$	98.1 60.3 72.4 80.1 71.5 68.7	104.6 71.1 70.4 77.2 71.2
		5.34 3.24 3.65 3.71 4.02 4.36 4.23	5.04 3.78 4.12 4.08 4.84
6-ОН	$I_{2S}A^{6OH}{}_{NS}$	100.0 60.8 72.4 80.5 73.8 62.6	102.0 77.6 70.7 78.7 71.4
		5.31 3.27 3.71 3.70 3.89 3.86-3.88	5.26 4.35 4.25 4.06 4.84
N-Ac	$I_{2S}A^{6S}{}_{NAc}$	96.6 56.2 73.0 79.3 72.3 69.6	102.2 76.8 67.3 74.2 70.8
		5.15 4.03 3.76 3.78 4.04 4.31-4.37	5.20 4.37 4.31 4.08 4.91
2-OH/N-Ac	$I_{2OH}A^{6S}{}_{NAc}$	97.1 56.2 72.5 79.6 71.8 68.8	104.6 72.0 71.4 77.0 71.9
		5.18 4.00 3.78 3.79 4.08 4.37-4.26	5.01 3.75 3.42 4.10 4.78
6-OH/N-Ac	$I_{2S}A^{6OH}{}_{NAc}$	96.8 56.6 72.9 80.6 74.2 62.9	102.3 76.6 67.1 74.1 70.6
		5.14 4.03 3.79 3.76 3.91 3.87-3.92	5.26 4.37 4.28 4.07 4.91
2-ОН/6-ОН	$I_{2OH}A^{6OH}{}_{NS}$	98.2 60.5 72.5 80.2 73.5 62.4	104.3 72.2 71.5 77.8 72.2
		5.39 3.26 3.67 3.72 3.87 3.84-3.88	4.95 3.74 4.11 4.08 4.77
2-OH/6-OH/N-Ac	$I_{2OH}A^{6OH}{}_{NAc}$	97.1 56.2 72.3 79.6 73.7 62.3	104.3 72.5 72.2 77.3 72.6
		5.18 3.97 3.76 3.74 3.89 3.85-3.88	4.92 3.69 3.89 4.07 4.73
Oversulfated (OS)	I _{2S,3S} A ^{6S} 3S,NS	99.6 59.3 82.9 76.8 72.1 68.7	100.8 73.6 72.9 733 69.8
		5.32 3.50 4.48 4.04 4.05 4.27-4.41	5.32 4.55 4.72 4.39 5.05

Table S1. ¹³C NMR chemical shifts values (/ppm down field of TSP) of predominant repeating sequences in chemically-modified heparin derivatives. A-1 to A-6 and I-1 to I-5 represent positions around the rings of glucosamine (aminosugar): denoted A, or iduronate: denoted I. For the shorthand notations of polysaccharides and disaccharide repeats (columns on left), **2S**, **2OH**, **6S**, **6OH**, **NS** and **NAc** represent: sulfate (**S**), hydroxyl (**OH**) and acetyl (**Ac**) substitutions at positions 2-of iduronate, 6- of glucosamine or N- of glucosamine. Signals from the carbonyl group of iduronate and acetyl CH₃ groups of *N*-acetylated glucosamine derivatives are not shown. ¹³C spectra were recorded using 150 mg of polysaccharides in D₂O (0.8 mL) at 40 °C on a 400 MHz instrument and are in agreement with the assignments previously reported (1,2).

A. Robo1 Ig1-5

DROME_ROBO_1-5 CHICK_ROBO1_1-5 Consistency	PRIIEHPTDL PRIVEHPSDL ***8***5**	20 VVKKNEPATL IVSKGEPATL 8*4*4****	00 N C K V E C K P E P N C K A E C R P T P * * * 5 * * 6 * 3 *	TIEWFKDGEP TIEWYKGGER ****6*3**2	V S T N E K – – K S V E T D K D D P R S * 4 * 5 5 3 0 0 6 *
DROME_ROBO_1-5 CHICK_ROBO1_1-5 Consistency	60 RVQFKDCAL IRMLLPSGSL **52434*6*	70 FFYRTMQG-K FFLRIVHGRK **3*353*0*	80 KEQDGGEYWC SRPDEGVYVC 443*2*2*0*	90 VAKNRVGQAV VARNYLGEAV **6*26*6**	SRHASIQIAV SHNASIEVAI * 34 *** 6 8 * 8
DROME_ROBO_1-5 CHICK_ROBO1_1-5 Consistency		D TR VAK GE TA D VM VAV GE PA * 4 3 * * 2 * * 3 *)	140 PEPTLIWIKD PEPTISWKKD ****72*1**	GVPLDDLKAM GTPLDD *4****0000
DROME_ROBO_1-5 CHICK_ROBO1_1-5 - Consistency	FGASSRVRI KDERIT 0000444113))		200 VQV- ESEVAE LTVL 000000063*0
DROME_ROBO_1-5 CHICK_ROBO1_1-5 Consistency	KPYFMKEPK RPSFVKRPS 6*2*5*4*4	DQVMLYGQTA NLAVTVDDSA 525533345*	T FHC SVG GD P E FKCEARGD P 3 * 2 * 4 5 2 * * *	240 P P K V L W K K E E V P T V R W R K D D 2 * 3 * 2 * 6 * 6 6	250 GNIPVSRARI GELPKARYEI * 47 * 26 * 24 *
DROME_ROBO_1-5 I CHICK_ROBO1_1-5 Consistency	260 HDEKSLEIS DDHTLKIR 0 * 6 2 5 * 5 * 3)	0	I SARASIIV AEASATLTVQ 34*3*5*3*3	A P N T K R S E P Q V K P R 3 * 4 * 4 2 6 * 3
DROME_ROBO_1-5 N CHICK_ROBO1_1-5 Consistency	310 310 310 310 310 310 310 310 310 310	QLPCMASGNP TFQCEATGNP 343*2*5***	0	VSTLMFP SQNLLFSYQP 244*7*000*	N S S H G R Q Y V A P Q S S S R F S V S 1 4 * 3 4 * 1 2 * 6
DROME_ROBO_1-5 A	360)	0		. <u> 4</u> 00
Consistency	ADGTLQITDV QTGDLTITNV 33*3*3*5*	RQEDEGYYVC QRSDVGYYIC 554*2***8*	SAFSVVDSST QTLNVAGSII 4445*53*23	VRVFLQVSSV TKAYLEVTDV 4656*6*54*	-DERPPPIIQ IADRPPPVIR 026****8*5
DROME_ROBO_1-5 CHICK_ROBO1_1-5 Consistency	LIGTLQITDV 2TGDLTITNV 33*3*3**5* 410 GPANQTLPK 2GPVNQTVAV **5***632	RQEDEGYYVC QRSDVGYYIC 554*2***8* 42 GSVATLPCRA DGTLVLNCVA 34434*1*1*	SAFS VVDSST QTINVAGSII 4445*53*23 	VRVF QVSSV TKAY E VTDV 4656 6 54* 	- D ERPPPIIQ IA DRPPPVIR 026****8*5 450 GNRYSIIQGS DSRIKQLETG 35*3417624

Unconserved 0 1 2 3 4 5 6 7 8 9 10 Conserved

B. Robo2 Ig1-5

Figure S1. Amino acid sequence alignment. Amino acid sequences for **(A)** *Drosophila* (Drome) Robo and cRobo1 Ig1-5 and **(B)** *Drosophila* (Drome) Robo and cRobo2 Ig1-5 were compared using PRALINE. The conservation scoring scheme runs from 0 for the least conserved up to 10 for the most conserved.

A. dSlit D1-4 binding

B. Robo Ig1-5-Fc binding

Figure S2. Binding of ~ 10-mer heparin SEC saccharide fraction to dSlit D1-4 and dRobo Ig1-5-Fc. The ability of varying concentrations of a SEC fraction containing ~10-mer heparin saccharides to bind to (A) his₆-cmyc dSlit D1-4 and (B) dRobo Ig1-5-Fc was determined using a competition ELISA. % binding values represent means of triplicate wells containing competitor relative to means of triplicate wells lacking competitor and error bars represent the % combined standard deviation calculated as described in Experimental Procedures. Data is representative of four separate experiments. Arrows represent the concentration of saccharide chromatographic fractions used in screening experiments.

A. ~10mer PMH SEC fraction

Figure S3. Effect of protein and GAG concentration on the cellular activity of dSlit D1-4. Slices of chick retina were treated *ex vivo* with (A) varying concentrations of his_6 -cmyc-dSlit D1-4 or heparinases I-III followed by 10 µg/ml his₆-cmyc-dSlit D1-4 in the presence of varying concentrations of (B) heparin or (C) ~10mer heparin SEC fraction. Collapsed and uncollapsed growth cones were counted in blind conditions across several pieces of retina for ~100 growth cones and the % of collapsed growth cones calculated. Values shown are the mean % of collapsed growth cones calculated from three groups of retinal pieces and error bars represent the standard deviation for % values. Data are representative of two separate experiments. Arrows represent the concentrations of dSlit D1-4, polysaccharide variants and saccharide chromatographic fractions used in screening experiments.

REFERENCES

- 1. Yates, E. A., Santini, F., Guerrini, M., Naggi, A., Torri, G., and Casu, B. (1996) 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. *Carbohydr Res* **294**, 15-27
- 2. Yates, E. A., Santini, F., De Cristofano, B., Payre, N., Cosentino, C., Guerrini, M., Naggi, A., Torri, G., and Hricovini, M. (2000) Effect of substitution pattern on 1H, 13C NMR chemical shifts and 1J(CH) coupling constants in heparin derivatives. *Carbohydr Res* **329**, 239-247