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Supplimentary information

A. Mathematical model of the network

The p53− SMAR1 regulatory network is modeled by a set

of variables {Xi} i = 1,2, ...,N with N = 18 (18 molecular

species) (Table 1) which undergo thirty five reaction channels

(M = 35) (Table 2). The state vector at any instant of time t is

given by ~X(t) = (X1, . . . ,XN)
T , where the variables in the vec-

tor are populations of the molecular species listed in Table 1.

The classical deterministic equations constructed from these
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reactions in the network (Fig. 1, Table 2) are given by,

dx1

dt
= −k1x1x14 + k6 − k8x1x2 + k9x4 − k12x1x6 + k13x7

+k17x10x12 − k29x1x15 + k33x10x18 + k34x9x15 (1)

dx2

dt
= k2x3 − k5x2 + k7x4 − k8x1x2 + k9x4 − k18x2x15

−k20x2x8 + k21x13 − k32x2x11 (2)

dx3

dt
= k3x1 − k4x3 (3)

dx4

dt
= −k7x4 + k8x1x2 − k9x4 − k19x4x8 − k30x4x15 (4)

dx5

dt
= −k10x5 + k11x6 (5)

dx6

dt
= k10x5 − k11x6 − k12x1x6 (6)

dx7

dt
= k12x1x6 − k13x7 − k15x7x8 + k29x1x15 + k31x17 (7)

dx8

dt
= −k14x8 − k15x7x8 − k19x4x8 − k20x2x8 + k23

−k35x8x15 (8)

dx9

dt
= k15x7x8 − k16x9 − k34x9x15 (9)

dx10

dt
= k16x9 − k17x10x12 − k33x10x18 (10)

dx11

dt
= −k22x11 − k25x11x16 + k24 − k32x2x11 (11)

dx12

dt
= −k17x10x12 + x25x11x16 (12)

dx13

dt
= k19x4x8 − k21x13 (13)

dx14

dt
= −k1x1x14 + k20x2x8 (14)

dx15

dt
= −k18x2x15 + k26 − k27x15 − k29x1x15

−k30x4x15 (15)
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dx16

dt
= k18x2x15 − k25x11x16 − k28x16 + k31x17 (16)

dx17

dt
= k30x4x15 − k31x17 (17)

dx18

dt
= k32x2x11 − k33x10x18 (18)

where {ki} and {xi}, for i = 1,2, . . . ,N, represent the sets of

rate constants of the reactions (Table 2) (see the article) and

concentration of the variables corresponding to the molecular

species xi = Xi/V , where V is system size (Table 1) (see the ar-

ticle), respectively. The coupled set of non-linear differential

equations can be solved numerically using the standard fourth

order Runge–Kutta method of numerical integration1 to study

dynamical behavior of the system.

B. Quasi-steady state approximation

The system of reactions (Table 2) (see the article), from which

the ODEs (12)–(30) were constructed, can be approximately

divided into two types of elementary reactions, namely, fast

and slow reactions2. The variables in the state vector~x can be

divided into fast and slow vectors given by

~xs =













x1

x2

x8

x11

x15













; ~x f =









y1

y2

y3

y4









; ~x =

[

~xs

~x f

]

;

y1 =













x3

x4

x5

x6

x7













;y2 =

[

x9

x10

]

;y3 =





x12

x13

x14



 ;y4 =





x16

x17

x18



 (19)

The fast variables are normally corresponding to complex

molecular species. Generally, formation of complex molec-

ular species due to fast reactions is followed by fast decay of

these complexes, the dynamics of the fast variables reaches

steady state much quickly as compared to the dynamics of

slow variables3,4. We then use Henri–Michaelis–Menten–

Briggs–Haldane approximation to assume that the time evo-

lution of fast state vector~x f reaches equilibrium state defined

by~x∗ f much faster as compared to the time evolution of slow

state vector~xs 3,4. Applying this approximation, we can reach

the following steady state for fast variables,

d~x f

dt
≈ 0; ~x∗ f =









y∗1
y∗2
y∗3
y∗4









;

y∗1 =













x∗3
x∗4
x∗5
x∗6
x∗7













;y∗2 =

[

x∗9
x∗10

]

;y∗3 =





x∗12

x∗13

x∗14



 ;y∗4 =





x∗16

x∗17

x18



(20)

such that the dynamics of the system for sufficiently large time

is governed by the dynamics of the slow variables given by

d~x

dt
=

d

dt

[

~xs

~x f

]

≈
d~xs

dt
=

d

dt













x1

x2

x8

x11

x15













(21)

The approximate solution of the complex model can be ob-

tained from this reduced model using quasi-steady-state ap-

proximation.

C. Multifractal DFA approach

Multifractal detrended fluctuation analysis (MF-DFA) is a

technique used to determine fractal properties, and to detect

important correlations in nonstationary time series5. Frac-

tal parameters, namely, Hurst exponent (H), generalized di-

mension (D) etc can be calculated numerically using method

adopted by Kantelhardt et.al.6 as summarized below. First, the

time series signal {x j} of length N is taken as random walk,

and can be represented by the profile, Y (i) = ∑i
j=1(x j −〈x〉),

where, 〈x〉 is mean value of the signal, and i = 1,2, ...,N. Sec-

ond, profile Y (i) is divided into Ns = int(N
s
) equal nonover-

lapping segments of size s. To consider all data points, 2Ns

segments are considered by counting starting from both ends

of the data. Third, the following variance is determined,

F2(s,ν) =
1

s

s

∑
i=1

{Y [(ν − 1)s+ i]− yν(i)}
2 (22)

where, ν = Ns + 1, ...,2Ns, and yν(i) is the fitting polynomial

in segment ν . Fourth, the qth order fluctuation function is

estimated by averaging over all segments,

Fq(s) =

{

1

2Ns

2Ns

∑
ν=1

[Y [(ν,s)]q/2

}1/q

(23)

Fifth, the scaling behavior of the function Fq(s) is represented

by,

Fq(s)∼ sHq (24)
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where, Hq is the generalized Hurst exponent, which represents

the measure of self-similarity and correlation properties of the

signal. Then Hq is related to classical scaling exponent τ(q),

τ(q) = qHq − 1 (25)

and from the definition of Holder exponent, α = dτ
dq

, the sin-

gularity function f (α)5 is given by,

f (α) = qα − τ(q) (26)

Then, generalized dimension of the signal is measured by,

Dq =
τ(q)

q− 1
(27)

Now, D0, for q = 0, is the fractal or Hausdorff dimension,

D1 is information dimension and D2 represents correlation

dimension5. Multifractal signature can be observed in the

system if there exists significant dependence of Hq on q in the

time series due to different scaling nature of small and large

fluctuations6. Positive dependence of Hq on q indicates large

fluctuations in the time series, whereas negative dependence

of Hq on q exhibits small fluctuations in the time series. Fur-

ther, in multifractal time series, small and large fluctuations

are characterized by large and small values of Hq.

D. Visibility graph of time series

This technique maps a time series to a network7, where each

observation in time series is translated to a node and an edge

between any two nodes is introduced when the following vis-

ibility condition is satisfied i.e. two nodes corresponding to

observations x(ta) and x(tb) are connected if all intermediate

states x(tc) with ta < tc < tb satisfy,

xb − xc

tb − tc
>

xb − xa

tb − ta
(28)

These networks are undirected due to symmetry in visibility

condition. Since properties of the time series are inherited to

the corresponding network, the studies of this network provide

useful information which can’t be observed in traditional time

series data.

Topological properties of networks

The following topological properties of the networks are stud-

ied to examine the important behavior of the networks.

Degree distribution: The degree k of a node indicates the

number of links the node connects with other nodes in the net-

work. Consider a network defined by a graph G = (N,E),
where N and E are number of nodes and edges respectively.

The probability of degree distribution (P(k)) of the network

is the probability that any chosen node will have a degree k,

which is given by,

P(k) =
nk

N
(29)

where, nk is the number nodes having degree k. P(k) in ran-

dom and small-world networks follow Poisson distribution,

whereas, it obeys power law P(k)∼ k−γ in scale-free and hier-

archical networks depending on the value of γ which indicates

the importance of hubs or modules in the network8.

Clustering co-efficient: Clustering co-efficient of a network

is a measure of how strongly a node’s neighborhoods are in-

terconnected. It is the ratio of the number of triangular motifs

a node has with its nearest neighbor to the maximum possible

number of such motifs. For an undirected network, clustering

co-efficient (C(ki)) of ith node can be calculated by,

C(ki) =
2ei

ki(ki − 1)
(30)

where, ei is the number of connected pairs of nearest-neighbor

of ith node, and ki is its degree. C(k) in scale free networks

does not depend on k, whereas in hierarchical network it fol-

lows a power law, C(k) ∼ k−α , with α ∼ 1.

Neighborhood connectivity: Neighborhood connectivity of

a node of a network (CN(k)) represents the average connec-

tivities of the nearest neighbors of the node in the network9,

given by,

CN(k) = ∑
q

qP(q|k) (31)

where, P(q|k) is conditional probability that a link belonging

to a node with connectivity k points to a node with connec-

tivity q. The k dependence of CN(k), i.e. CN(k) ∼ k−β is a

signature of hierarchical topology in the network10. Further,

change in the sign of exponent β could be an indicator of as-

sortivity in the network topology11.

Betweenness centrality: Betweenness centrality of a node

represents the ability to (a) extract benefits from information

flows in the network12, and (b) extent to which the node has

control over the other nodes in the network through commu-

nication13,14. If di j(v) indicates the number of geodesic paths

from node i to node j passing through node v, and di j rep-

resents number of geodesic paths from node i to j, then be-

tweenness centrality (CB(v)) of a node v can be measured by,

CB(v) = ∑
i, j;i6= j 6=k

di j(v)

di j

(32)

If M denotes the number of node pairs excluding v, then nor-

malized betweenness centrality is given by, CNB(v) =
1
M

CB(v).
Closeness centrality: Closeness centrality (CC) estimates

how fast information is spread from a node to other nodes

reachable from it in the network15. CC of a node i is the recip-

rocal of the mean geodesic distance between the node and all

other nodes connected to it in the network, and is given by,

CN(k) =
n

∑ j di j

(33)
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where, di j is geodesic path length between nodes i and j, and n

is the total number of nodes in the network connected to node

i.

Eigenvector centrality: Eigenvector centrality of a node i

(CE(i)) in a network is proportional to the sum of i′s neigh-

bor centralities16, and it is measured by,

CE(i) =
1

λ ∑
j=nn(i)

v j (34)

where, nn(i) indicates nearest neighbors of node i in the

network. λ is the eigenvalue of the eigenvector vi given

by, Avi = λ vi, where, A is the adjacency matrix of the

network. The principal eigenvector of A, which corresponds

to maximum eigenvalue λmax, is taken to have positive eigen-

vector centrality score17. Since node’s eigenvector centrality

function smoothly varies over the network and depends on its

neighbors, node with high eigenvector centrality is embedded

in the locality of nodes of high eigenvector centralities,

and chance of having isolated nodes in and around the

locality is very low16. Hence, eigenvector centrality can be

used as an indicator of node’s spreading power in the network.

E. Permutation entropy: a measure of complexity

The complex information contained in a system is inherited

in the time series of the constituting variables of the system,

and can be measured by calculating permutation entropy of

the time series18,19. Permutation entropy H of a time series

of a dynamical variable x(t) of a system can be calculated as

follows. The time series x(t) can be mapped onto a symbolic

sequence of length N: x(t) = {x1,x2, ...,xN}. This sequence

is then partitioned into M number of short sequences of equal

length U i.e. x(t) = {w1,w2, ...,wM}, where ith window is

given by wi = {xi+1,xi+2, ...,xi+U}. This window is allowed

to slide along x(t) with maximum overlap. Permutation en-

tropy of a window wi can be calculated by defining a short

sequence of embedded dimension r, Si = {xi+1,xi+2, ...,xi+r}
in r-dimensional space, finding all possible inequalities of di-

mension r and mapping the inequalities along the ascendingly

arranged elements of wi to find the probabilities of occurrence

of each inequality in wi. Since q out of r! permutations are

distinct, one can define a normalized permutation entropy as

Hi =− 1
ln(r!) ∑

q
j=1 p jln(p j), where 0≤Hi(r)≤ 1. The mapped

permutation entropy spectrum of time series x(t) is repre-

sented by H = {H1,H2, ...,HM}. In self-organized state one

has H → 0.
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