Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016

1 Supplementary Information

2 Glycomic profiling of targeted serum haptoglobin for gastric

3 cancer using nano LC/MS and LC/MS/MS

- 4 Sung Hyeon Lee^a, Seunghyup Jeong^{b,c}, Jua Lee^{b,c}, In Seok Yeo^d, Myung Jin Oh^{b,c}, Unyong
- 5 Kim^{b,c}, Sumin Kim^{b,c}, Su Hee Kim^a, Seung-Yeol Park^e, Jae-Han Kim^f, Se Hoon Park^g, Jung
- 6 Hoe Kim^d*, and Hyun Joo An^{b,c}*

7 a. GLYCAN Co., Ltd., Seongnam, Korea

8 b. Asia-pacific Glycomics Reference Site, Daejeon, Korea

9 c. Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea

10 d. Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea

11 e. Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and the Department of

12 Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA

13 f. Department of Food and Nutrition, Chungnam National University, Daejeon, Korea

14 g. Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University Samsung Medical

15 Center, Seoul, Korea

16

Corresponding authors: Jung Hoe Kim, E6-3 Department of Biological Sciences, Korea
Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 305-701,
Republic of Korea. E-mail: kimjh@kaist.ac.kr. Fax: +82-42-350-2690. Hyun Joo An, 455
College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu,
Daejeon 305-764, Republic of Korea. E-mail: hjan@cnu.ac.kr. Fax: 82-42-821-8551.

22

²³ *Jung Hoe Kim and Hyun Joo An contributed equally to this paper as co-corresponding
²⁴ authors.

1 Supplemental Tables and Figures

2 Suppl Table 1. Clinical and histopathological information of serum samples used in this

3 study

Characteristic	Number of samples (%)			
General Classification				
Healthy Control	30			
Gastric Cancer	30			
Age in Years (median, range)				
Healthy Control	49.4, 33-77			
Gastric Cancer	50.7, 31-76			
Patient Sex				
Male	15 (50%)			
Female	15 (50%)			
Pathological Stage				
IV	30 (100%)			
Cancer type				
Adenocarcinoma	30 (100%)			

2 Suppl Table 2. Protein identification for lectin-binding target spots using LC-MS/MS

3 analysis. Identified proteins showed more than 60 mowse score and 9% coverage were listed.

	Spot label	Protein identified by LC-MS/MS	Accession number (NCBI BLAST)	Mowse score	Peptides matched	Coverage(%)
	Normal	haptoglobin	gi 176792	115	15	15
		haptoglobin haptoglobin-related protein	gi 466455 gi 210148826	106 102	15 15	15 11
	Gastric	haptoglobin haptoglobin	gi 176792 gi 466455	145 116	33 32	16 12
	Cancer	haptoglobin-related protein	gi 210148826	111	32	9
	The spots liste	ed correspond to lanes in rectangular in	nset in Supple Fig. 1A.			
4						
5						
6						
7						
8						
9						
10						
11						
12						

13

- 2 Suppl Table 3. Relative abundance of 35 distinct N-glycans of haptoglobin found in healthy
 3 controls, gastric cancer patients as well as commercial standard (C.standard) sera. Criteria:
- 4 100% frequency in C.standard and top 99% in all groups

	Composition			C.standard		Healthy controls		Cancer patients		
Glycan Mass/Da	Hex	HexNAc	Fuc	NeuAc	Avg(%)	<u>Ste</u>	<u>Avg(%)</u>	<u>Ste</u>	Avg(%)	<u>Ste</u>
	_									
2222.78296	5	4	0	2	27.544	1.547	29.726	1.081	29.789	1.043
2879.01056	6	5	0	3	21.935	0.464	24.911	1.314	20.980	1.101
2587.91516	6	5	0	2	13.001	0.234	11.506	0.555	9.365	0.596
1931.68756	5	4	0	1	12.389	0.270	11.738	0.295	10.989	0.260
3025.06846	6	5	1	3	6.251	0.149	5.966	0.508	9.850	0.920
2296.81976	6	5	0	1	2.869	0.085	2.454	0.116	2.079	0.122
2733.97306	6	5	1	2	2.754	0.042	1.864	0.187	3.304	0.334
1640.59216	5	4	0	0	2.219	0.038	1.266	0.110	1.257	0.118
2953.04736	7	6	0	2	1.897	0.042	1.928	0.112	1.676	0.107
2368.84086	5	4	1	2	1.495	0.048	1.455	0.078	1.876	0.166
3244.14276	7	6	0	3	1.080	0.091	1.221	0.111	1.069	0.099
2077.74546	5	4	1	1	0.819	0.031	0.673	0.037	0.950	0.082
2661.95196	7	6	0	1	0.745	0.029	0.591	0.041	0.504	0.040
3390.20066	7	6	1	3	0.385	0.016	0.318	0.043	0.803	0.119
2005.72436	6	5	0	0	0.355	0.009	0.183	0.014	0.168	0.013
2442.87766	6	5	1	1	0.327	0.024	0.219	0.020	0.325	0.032
2280.82486	5	5	1	1	0.298	0.011	0.415	0.025	0.311	0.026
3099.10526	7	6	1	2	0.285	0.017	0.236	0.024	0.467	0.056
2093.74036	6	4	0	1	0.272	0.011	0.273	0.014	0.319	0.020
1566.55536	4	3	0	1	0.215	0.012	0.195	0.011	0.239	0.018
3171.12636	6	5	2	3	0.181	0.024	0.179	0.034	0.563	0.129
1769.63476	4	4	0	1	0.155	0.005	0.136	0.006	0.131	0.010
3042.08376	7	5	2	2	0.134	0.004	0.128	0.014	0.220	0.020
2134.76696	5	5	0	1	0.127	0.003	0.095	0.005	0.118	0.013
2370.85656	7	6	0	0	0.122	0.040	0.055	0.010	0.055	0.021
1989.72946	5	5	1	0	0.107	0.005	0.107	0.008	0.087	0.008
2425.86236	5	5	0	2	0.105	0.006	0.076	0.005	0.096	0.012
2571.92026	5	5	1	2	0.103	0.004	0.121	0.008	0.089	0.008
1624.59726	4	4	1	0	0.103	0.004	0.148	0.010	0.136	0.014
1275.45996	4	3	0	0	0.101	0.004	0.074	0.005	0.092	0.008
1786.65006	5	4	1	0	0.099	0.008	0.080	0.007	0.097	0.010
1462.54446	3	4	1	0	0.095	0.006	0.125	0.011	0.157	0.019
1827.67666	4	5	1	0	0.092	0.007	0.109	0.012	0.106	0.011
2808.00986	7	6	1	1	0.090	0.005	0.063	0.007	0.110	0.014
1234.43336	5	2	0	0	0.079	0.003	0.093	0.007	0.072	0.007

2 Suppl Figure 1. The experimental workflow for N-glycan analysis of targeted serum
3 haptoglobin based on immunoaffinity purification followed by chip-based nano-LC/Q-TOF
4 MS and MS/MS

Suppl Fig 2. Purification of haptoglobin from commercial serum. Haptoglobin was purified
from 450 μL serum by anti-haptoglobin affinity chromatography. The purified haptoglobin
was subjected to 12.5% SDS-PAGE, and bands were stained by Coomassie Brilliant Blue.
Lane 1: size marker. Lane 2: 1:100 diluted serum. Lane 3: purified haptoglobin.

2 Suppl Fig 3. Pearson correlation coefficient (R) based on haptoglobin glycan composition

3 profiles derived from 7 commercial sera samples.

Suppl Fig 4. Identification of fucose location of serum haptoglobin. Targeted CID MS/MS
spectrums of bi-sialylated, mono-fucosylated, bi-antennary N-glycans (A) and tri-sialylated,
mono-fucosylated, tetra-antennary (B) glycans taken from the major isomer during LC
elution of the composition Hex₅HexNAc₄Fuc₁NeuAc₂ and Hex₇HexNAc₆Fuc₁NeuAc₃,
respectively.

Suppl Fig 5. A representative processes related to *in vivo* synthesis pathway of SLe^a or SLe^x.

3 Red and blue arrows indicate fucosylation and sialylation, respectively.

