Supplementary Data

Effect of flexible linker length on the activity of fusion protein 4-coumaroyl-CoA

ligase::stilbene synthase

Huili Guo,^{a,#} Yadong Yang,^{a,#} Feiyan Xue,^{a,#} Hong Zhang, ^a Tiran Huang, ^a Wenbin Liu, ^a Huan Liu, ^a Fenqiang Zhang, ^a Mingfeng Yang, ^a Chunmei Liu, ^a Heshu Lu, ^{a*} Yansheng Zhang, ^{b,*} and Lanqing Ma^{a,c,*}

Name	Sequence (5'-3')
4CL-up	TAAA <u>GGATCC</u> ATGGCGCCACAAGAACAA
4CL-dw	GCCA <u>CTCGAG</u> TCACAATCCATTTGCTAG
STS-up	ATCA <u>GGATCC</u> ATGGCAGCTTCAACTGAAGAGA
STS-dw	AGTA <u>CTCGAG</u> TTAAATGATGGGCACATTCGT
linker-up	ATTT <u>GGATCC</u> ATGGCGCCACAAGAACAA
linker-dw	TGAT <u>CTCGAG</u> TTAAATGATGGGCACACT
linker-free-inter-end	TCATCTCTTCAGTTGAAGCTGCCATCAATCCATTTGCTAGTTTTGCCCTC
linker-free-inter-star	GAGGGCAAAACTAGCAAATGGATTGATGGCAGCTTCAACTGAAGAGATGA
(GSG)₁-inter-end	TCATCTCTTCAGTTGAAGCTGCCAT <u>GCCAGATCC</u> CAATCCATTTGCTAGTTTTGCCCTCA
(GSG) ₁ -inter-star	GAGGGCAAAACTAGCAAATGGATTG <u>GGATCTGGC</u> ATGGCAGCTTCAACTGAAGAGATGA
(GSG) ₂ -inter-end	TCTCTTCAGTTGAAGCTGCCAT <u>GCCAGATCCGCCAGATCC</u> CAATCCATTTGCTAGTTTTGCC
(GSG) ₂ -inter-star	GGCAAAACTAGCAAATGGATTG <u>GGATCTGGCGGATCTGGC</u> ATGGCAGCTTCAACTGAAGAGA
(GSG)₃-inter-end	CAGTTGAAGCTGCCAT <u>GCCAGATCCGCCAGATCCGCCAGATCC</u> CAATCCATTTGCTAGT
(GSG)₃-inter-star	ACTAGCAAATGGATTG <u>GGATCTGGCGGATCTGGCGGATCTGGC</u> ATGGCAGCTTCAACTG
(GSG)₄-inter-end	GTTGAAGCTGCCAT <u>GCCAGATCCGCCAGATCCGCCAGATCCGCCAGATCC</u> CAATCCATTTGCTAG
(GSG)₄-inter-star	CTAGCAAATGGATTG <u>GGATCTGGCGGATCTGGCGGATCTGGCGGATCTGGC</u> ATGGCAGCTTCAACT
(GSG)₅-inter-end	GTTGAAGCTGCCATgccagatccgccagatccgccagatccgccagatccgccagatccCAATCCATTTGCT
(GSG)₅-inter-star	CTAGCAAATGGATTGggatctggcggatctggcggatctggcggatctggcggatctggcggatctggc ATGGCAGCTTCAACT
(GGGGS) ₁ -inter-end	TCTCTTCAGTTGAAGCTGCCAT <u>CGAGCCACCGCCACC</u> CAATCCATTTGCTAGTTTTGCC
(GGGGS) ₁ -inter-star	GGCAAAACTAGCAAATGGATTG <u>GGTGGCGGTGGCTCG</u> ATGGCAGCTTCAACTGAAGAGA
(GGGGS) ₂ -inter-end	CAGTTGAAGCTGCCAT <u>CGAGCCACCGCCACCCGAGCCACCGCCACC</u> CAATCCATTTGCTAGT
(GGGGS) ₂ -inter-star	ACTAGCAAATGGATTG <u>GGTGGCGGTGGCTCGGGTGGCGGTGGCTCG</u> ATGGCAGCTTCAACTG
(GGGGS) ₃ -inter-end	AGTTGAAGCTGCCAT <u>cgagccaccgccacccgagccaccgccaccgagccacc</u> CAATCCATTTGCT
(GGGGS) ₃ -inter-star	CTAGCAAATGGATTGggtggcggtggctcgggtggcggtggctcgggtggcggtggctcgATGGCAGCTTCAACT
(GGGGS) ₄ -inter-end	AGTTGAAGCTGCAT <u>cgagccaccgccaccgcgccaccgcgccaccgcgccaccgcgccaccgcacc</u> CAATCCATTTGCT
(GGGGS)₄-inter-star	$CTAGCAAATGGATTG ggtggcggtggctcgggtggccggtggccggtggccggtggccggtggccggtggcccg} ATGGCAGCTTCAACT$

Supplementary Table 1. Oligonucleotides used as primers for the PCR amplifications in this study.

Note: The underlined sequences in the 4CL-up, STS-up, and linker-up primers indicate the *Bam*HI site. The underlined sequences in the 4CL-dw, STS-dw, and linker-dw primers indicate the *Xho*I site. The underlined sequences in the other primers indicate the nucleotide sequences of the different linkers.

Supplementary Fig. 1. HPLC analysis of resveratrol produced in *S. cerevisiae* and *E. coli*. (A) HPLC profiles (A_{306nm}) of the authentic standard of resveratrol. (B, C) HPLC profiles of culture media from *S. cerevisiae* and *E. coli* expressing 4CL or STS alone, produced no resveratrol. (D) HPLC profiles of culture media from *S. cerevisiae* transformed with 4CL-linker-STS. (E) HPLC profiles of culture media from *E. coli* transformed with 4CL-linker-STS. Peaks indicated are the products of resveratrol. (F) Identification of resveratrol by LC-MS.

Supplementary Fig. 2. SDS-PAGE analysis of the nine total proteins from the cell lysate after incubation 48 h. Lane 1-5: the total proteins from engineered *E. coli* expressing 4CL-(GSG)_n-STS ($n \le 5$), Lane 6-9: the total proteins from engineered *E. coli* expressing 4CL-(GGGGS)_n-STS ($n \le 4$). Target protein is indicated by arrow.