Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016

No	Ki (nM)						
1	58	2	68	3	33	4	25
5	55	6	110	7	155	8	86
9	33	10	596	11	360	12	54
13	190	14	62	15	8	16	29
17	25	18	2	19	48	20	2
21	78	22	9	23	4	24	33
25	33	26	>30	27	3.4	28	18
29	4.5	30	3	31	1.1	32	1.1
33	26	34	>30	35	7	36	43
37	>30	38	2.1	39	>30	40	>30
41	16	42	19	43	5.3	44	7.6
45	30	46	24	47	3.8	48	4.4
49	20	50	5.6	51	30	52	1300
53	440	54	62	55	30	56	20
57	8	58	5	59	12	60	7
61	1	62	5	63	5	64	3
65	5	66	15	67	0.7	68	2.7
69	5.23	70	18	71	3	72	10
73	10	74	12	75	11	76	38
77	0.1	78	590	79	0.3	80	2.3
81	8.8	82	0.4	83	1.2	84	0.7
85	4.7	86	2.2	87	2	88	14
89	8.1	90	11	91	3.3	92	2.1
93	3.2	94	5.7	95	60	96	315
97	43	98	25	99	5.3	100	1.3
101	7	102	2.3	103	7		

Table S1 Inhibitory activities for CCR5 inhibitors

Table S2 ADMET properties prediction for screened compounds^a

Compound	Absorption ¹	Solubility ²	BBB ³	CYD2D6 ⁴	Hepatotoxicity ⁵	PPB ⁶	AlogP98	PSA_2D	vROF ⁷
1	0	2	2	1	1	2	4.443	77.623	0
15	0	4	3	0	0	1	0.976	100.145	0
18	0	2	3	0	1	2	3.188	89.448	0
20	0	2	3	0	1	2	2.985	89.448	0
25	0	3	3	0	1	1	3.206	100.145	0
29	0	2	3	0	1	1	3.305	92.035	0
32	0	3	3	0	0	2	2.232	84.787	0
33	0	3	3	0	0	2	2.301	84.787	0
34	0	3	3	0	0	2	2.232	84.787	0
38	0	2	3	0	1	1	3.285	97.037	0
42	0	3	3	0	0	2	2.301	84.787	0

43	0	3	3	0	0	2	2.232	84.787	0
45	0	2	2	0	0	1	3.729	84.787	0

^a The data was determined with Accelrys Discovery Studio.

¹ Absorption level (0 = good, 1 = moderate, 2 = low, 3 = very low).

² Solubility level (0 = extremely low, 1 = very low but soluble, 2 = low, 3 = good, 4 = optimal).

³ BBB, Blood brain barrier (0=very high, 1=high, 2=medium and 3=low).

⁴ CYP2D inhibition (0 = non inhibitor, 1 = likely to inhibit).

⁵ Hepatotoxicity (0=Non toxic and 1=toxic).

⁶ PPB, Plasma protein binding(0=PPB<90% and 2=PPB>95%).

⁷ Violation of Lipinski's rule of five.

Table S3 Binding free energies and its components for screened compounds^a

Compound	ΔG_{vdW}	ΔG_{ele}	$\Delta G_{ele,sol}$	$\Delta G_{nonpol,sol}$	ΔTS	ΔG
1	-65.72	-23.25	39.15	-13.57	-15.44	-47.95
15	-53.38	-53.80	59.24	-18.67	-23.79	-42.82
18	-62.15	-23.22	33.88	-17.68	-24.87	-44.30
20	-68.04	-13.72	40.44	-18.45	-15.41	-44.36
25	-68.39	-42.24	55.88	-18.64	-22.47	-50.92
29	-69.65	-29.72	40.21	-17.98	-19.00	-58.14
32	-59.72	-23.43	28.65	-10.01	-21.70	-42.81
33	-54.52	-26.50	30.01	-19.38	-23.32	-47.07
34	-53.51	-18.93	31.31	-18.14	-22.27	-37.00
38	-62.86	-32.42	40.89	-18.36	-25.87	-46.88
42	-66.47	-26.19	44.26	-19.78	-21.61	-46.57
43	-60.81	-9.00	30.10	-13.62	-17.67	-35.66
45	-68.17	-18.23	31.54	-20.24	-20.11	-54.99

 a All energies were in kcal/mol. T Δ S: the entropy changes. Δ G: the calculated binding free energy by MM-GBSA method.

Table S4. Energy contributions of key residues for CCR5 bound systems in the active site^a

Residue	CCR5-25	CCR5-29	CCR5-45	CCR5-MAR	CCR5-NIF
37	-0.052	-0.279	-0.001	0.008	-0.031
86	-1.258	-3.140	-2.651	-2.461	-3.326
89	-0.163	-1.775	-0.842	-0.925	-1.366
108	-0.504	-1.289	-0.957	-0.769	-1.467
109	-0.548	-1.076	-0.725	-0.691	-1.244
112	0.027	-0.486	-0.067	-0.402	-0.564

194	-0.480	-1.198	-0.849	-0.338	-0.766
195	0.123	-1.301	-0.304	-0.691	-0.236
198	-0.599	-0.852	-0.651	-1.898	-1.031
248	0.050	-1.080	0.106	-0.005	-0.116
251	0.734	-0.561	0.031	-0.646	-0.354
255	-1.142	-0.169	-1.448	-0.832	-0.322
259	0.089	0.026	-0.057	-0.001	-0.003
279	-1.100	-0.059	-0.612	-0.200	-0.117
283	2.449	-0.461	1.240	1.623	0.800
287	-0.485	-1.639	-1.022	-0.358	-1.571

^a All energies were in kcal/mol.

Fig. S1. Chemical structures of training set compounds.

QN^{*}o

Fig. S2. Chemical structures of test set compounds.

Fig. S3. Chemical structures of potent CCR5 inhibitors and CNS drugs.

Fig. S4. Comparison of conformational alignments. (a) The binding conformations of cocrystal ligand derived by LibDock method. (b) The binding conformations of cocrystal ligand derived by Surflex-Dock method.

Fig. S5. Chemical structures of candidates.

Fig. S6. Comparison of conformational alignments. (a) The binding conformations of cocrystal ligand derived by MD simulation.

Fig. S7. RMSDs of backbone atoms (C, Cα, and N) for CCR5-analogs complex systems and RMSDs of heavy atoms for ligands.

Fig. S8. RMSF of each residue for CCR5-analogs complex systems.

Fig. S9. The residue interaction spectrum for potent CCR5 inhibitors.