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1 Supplementary Figures
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Figure S1: Performance of different methods on simulated data (Simulation 2) with p = 100, K = 3 and n, = n,

50, 100, 200. (A-C) are ROC curves. (D-F) are precision-recall curves. Red line: MEDIA; blue line: grouped graphical lasso

(GGL); green line: D-trace loss estimator. For GGL, each colored curve corresponds to a fixed value of ws, with the value of

w1 varied. Each curve is averaged over 100 random generations of the data.
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Figure S2: Performance of different methods on simulated data (Simulation 3) with p = 100, K = 3 and n, = n, =
50, 100, 200. (A-C) are ROC curves. (D-F) are precision-recall curves. Red line: MEDIA; blue line: grouped graphical lasso
(GGL); green line: D-trace loss estimator. For GGL, each colored curve corresponds to a fixed value of ws, with the value of
wy varied. Each curve is averaged over 100 random generations of the data.

2 Supplementary Text

2.1 Algorithm for parameter estimation

In this section, we solve the optimization problem in the main text by using an alternating direction method of multipliers
(ADMM) [1]. We first introduce K auxiliary matrices {A} = {A,}/_, and rewrite the objective function as

min, Lp ({A}.(Ex). (Sv}) +AP ({2})
i ) (1)
subject to Ap =24y, k=1,..., K.

From (1), we consider the following augmented Lagrangian function:
L({8}{8},{4}) = Lo ({8}, {Ex}{Ev}) + AP ({2})
K

s K - 2
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where {A} = A;,..., Ak are dual variables and p serves as a penalty parameter. Given the solution ({At}7 {A"}, {At}>
at the ¢-th step (£ = 1,2,...), we update ({At“}, {At1} {A”l}) as follows:

(AN argmin L ({A}, (A1), {Af}) 3)
Ap=AF
k=1,...K
(AP, = argmin L ({41}, {A},{4"}) @
Ap=AT
k=1,....K
A = AL (AT AP B =1,.. K. o)

In particular, updating Ag, k = 1,..., K by minimizing L ({A}, {AY, {At}) is equivalent to solving the following
optimization problem:

N arg min 5 <Ai, 5y + 39 2%)/2+ pl> - <Ak72'§< e R AZ> ' ©
E=2g



where [ is a p X p identity matrix. According to Theorem 1 of [3], the explicit solution to (6) is given by Afjl =
G ((XA]’)“(XA]’Q + 25k ) /24 pI Bk — Bk 4 pAL — A}C) where G(U, @) = Uy {(UF ®Uy) 0 CYUL, and ¥ = Uy Sy UL
is the eigenvalue decomposition of ¥, with ordered eigenvalues o; > - -- > 0, o denotes the Hadamard product of matrices
and C;; = 2/(0; + 0;).

Updating Ay, k = 1,..., K by minimizing L ({At“}, {A}, {At}) is equivalent to solving the following optimization
problem:

(AL = argm

K K 3
gz_: |Ak_AZH _AZ/PH%‘F)\Z <Z(Ak)?y> ) (7)

n
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Similar to [2], foralli = 1,...,pand k = 1,..., K, the solution to problem (7) has (A) = (AL + AL /p)ii. While the
off-diagonal elements take the form

(A )i = Br)ij |1 - ————— ®)

k=1 +

where By, = AtH + A} /p. Based on the analysis above, the complete ADMM algorithm is summarized in Algorithm 1.
This algorithm can be accelerated by adaptively changing p. We set p = 0.1 and increase it iteratively by scaling it to up.
Here, we set u = 1.05. In the implementation of the algorithm, the convergence condition is

K
Do IAF = A%l < e -max( Z 1A, ZHN“H ©)
k=1

where ¢ is a tolerance which is set to 10~3 in our experiments.

Algorithm 1 ADMM algorithm for the multi-view differential network analysis model.
Input:

sample covariance matrices {3 x } and {3y }, parameter \.

Initialize:

t=0,A0=0,A)=A)=ILk=1,...,K,p=0.1,u=1.05maz, = 10, ¢ = 1073
while (not converged) do

1:t=t+1;

2: fix the others and update Ay, k= 1,..., K by AT =G ((f) X kY24 pI, 3k — 3k 4 pAL — A’,;)

k

y T

3: fix the others and update Ay, k = 1,..., K by (ALT);; = ( 1) ;
P{ZA 1( ) i}z +

4: update the multipliers ALt = AL 4 p(ALFY — AP k=1, K

5: update the parameter p by p = min(up, max,)

6: check the convergence conditions Zle AR — Al < e max(1, Zszl AL, Zszl | AE).

end while
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