Identifying differential networks based on multi-platform gene expression data

Le Ou-Yang, Hong Yan and Xiao-Fei Zhang

1 Supplementary Figures

Figure S1: Performance of different methods on simulated data (Simulation 2) with $p=100, K=3$ and $n_{x}=n_{y}=$ $50,100,200$. (A-C) are ROC curves. (D-F) are precision-recall curves. Red line: MEDIA; blue line: grouped graphical lasso (GGL); green line: D-trace loss estimator. For GGL, each colored curve corresponds to a fixed value of ω_{2}, with the value of ω_{1} varied. Each curve is averaged over 100 random generations of the data.

Figure S2: Performance of different methods on simulated data (Simulation 3) with $p=100, K=3$ and $n_{x}=n_{y}=$ $50,100,200$. (A-C) are ROC curves. (D-F) are precision-recall curves. Red line: MEDIA; blue line: grouped graphical lasso (GGL); green line: D-trace loss estimator. For GGL, each colored curve corresponds to a fixed value of ω_{2}, with the value of ω_{1} varied. Each curve is averaged over 100 random generations of the data.

2 Supplementary Text

2.1 Algorithm for parameter estimation

In this section, we solve the optimization problem in the main text by using an alternating direction method of multipliers (ADMM) [1]. We first introduce K auxiliary matrices $\{\tilde{\triangle}\}=\left\{\tilde{\triangle}_{k}\right\}_{k=1}^{K}$ and rewrite the objective function as

$$
\left\{\begin{array}{l}
\min _{\substack{\triangle_{k}=\triangle_{k}^{T} \\
k=1, \ldots, K}} L_{D}\left(\{\triangle\},\left\{\hat{\Sigma}_{X}\right\},\left\{\hat{\Sigma}_{Y}\right\}\right)+\lambda P(\{\tilde{\triangle}\}) \tag{1}\\
\text { subject to } \quad \triangle_{k}=\tilde{\triangle}_{k}, \quad k=1, \ldots, K .
\end{array}\right.
$$

From (1), we consider the following augmented Lagrangian function:

$$
\begin{gather*}
L(\{\triangle\},\{\tilde{\triangle}\},\{A\})=L_{D}\left(\{\triangle\},\left\{\hat{\Sigma}_{X}\right\},\left\{\hat{\Sigma}_{Y}\right\}\right)+\lambda P(\{\tilde{\triangle}\}) \\
+\sum_{k=1}^{K}\left\langle A_{k}, \triangle_{k}-\tilde{\triangle}_{k}\right\rangle+(\rho / 2) \sum_{k=1}^{K}\left\|\triangle_{k}-\tilde{\triangle}_{k}\right\|_{F}^{2} . \tag{2}
\end{gather*}
$$

where $\{A\}=A_{1}, \ldots, A_{K}$ are dual variables and ρ serves as a penalty parameter. Given the solution $\left(\left\{\triangle^{t}\right\},\left\{\tilde{\triangle}^{t}\right\},\left\{A^{t}\right\}\right)$ at the t-th step $(t=1,2, \ldots)$, we update $\left(\left\{\triangle^{t+1}\right\},\left\{\tilde{\triangle}^{t+1}\right\},\left\{A^{t+1}\right\}\right)$ as follows:

$$
\begin{gather*}
\left\{\triangle_{k}^{t+1}\right\}_{k=1}^{K}=\underset{\substack{\Delta_{k}=\triangle_{k}^{T} \\
k=1, \ldots, K}}{\arg \min } L\left(\{\triangle\},\left\{\tilde{\triangle}^{t}\right\},\left\{A^{t}\right\}\right) \tag{3}\\
\left\{\tilde{\triangle}_{k}^{t+1}\right\}_{k=1}^{K}=\underset{\substack{\tilde{\triangle}_{k}=\tilde{\Delta}_{k}^{T} \\
k=1, \ldots, K}}{\arg \min } L\left(\left\{\triangle^{t+1}\right\},\{\tilde{\triangle}\},\left\{A^{t}\right\}\right) \tag{4}\\
A_{k}^{t+1}=A_{k}^{t}+\rho\left(\triangle_{k}^{t+1}-\tilde{\triangle}_{k}^{t+1}\right), k=1, \ldots, K . \tag{5}
\end{gather*}
$$

In particular, updating $\triangle_{k}, k=1, \ldots, K$ by minimizing $L\left(\{\triangle\},\left\{\tilde{\triangle}^{t}\right\},\left\{A^{t}\right\}\right)$ is equivalent to solving the following optimization problem:

$$
\begin{equation*}
\triangle_{k}^{t+1}=\underset{\triangle_{k}=\triangle_{k}^{T}}{\arg \min } \frac{1}{2}\left\langle\triangle_{k}^{2},\left(\hat{\Sigma}_{X}^{k} \hat{\Sigma}_{Y}^{k}+\hat{\Sigma}_{Y}^{k} \hat{\Sigma}_{X}^{k}\right) / 2+\rho I\right\rangle-\left\langle\triangle_{k}, \hat{\Sigma}_{X}^{k}-\hat{\Sigma}_{Y}^{k}+\rho \tilde{\triangle}_{k}^{t}-A_{k}^{t}\right\rangle \tag{6}
\end{equation*}
$$

where I is a $p \times p$ identity matrix. According to Theorem 1 of [3], the explicit solution to (6) is given by $\triangle_{k}^{t+1}=$ $G\left(\left(\hat{\Sigma}_{X}^{k} \hat{\Sigma}_{Y}^{k}+\hat{\Sigma}_{Y}^{k} \hat{\Sigma}_{X}^{k}\right) / 2+\rho I, \hat{\Sigma}_{X}^{k}-\hat{\Sigma}_{Y}^{k}+\rho \tilde{\triangle}_{k}^{t}-A_{k}^{t}\right)$, where $G(\Psi, \Phi)=U_{\Psi}\left\{\left(U_{\Psi}^{T} \Phi U_{\Psi}\right) \circ C\right\} U_{\Psi}^{T}$, and $\Psi=U_{\Psi} \Sigma_{\Psi} U_{\Psi}^{T}$ is the eigenvalue decomposition of Ψ, with ordered eigenvalues $\sigma_{1} \geq \cdots \geq \sigma_{p}$, o denotes the Hadamard product of matrices and $C_{i j}=2 /\left(\sigma_{i}+\sigma_{j}\right)$.

Updating $\tilde{\triangle}_{k}, k=1, \ldots, K$ by minimizing $L\left(\left\{\triangle^{t+1}\right\},\{\tilde{\triangle}\},\left\{A^{t}\right\}\right)$ is equivalent to solving the following optimization problem:

$$
\begin{equation*}
\left\{\tilde{\triangle}_{k}^{t+1}\right\}_{k=1}^{K}=\underset{\substack{\tilde{\triangle}_{k}=\tilde{\triangle}_{k}^{T} \\ k=1, \ldots, K}}{\arg \min } \frac{\rho}{2} \sum_{k=1}^{K}\left\|\tilde{\triangle}_{k}-\triangle_{k}^{t+1}-A_{k}^{t} / \rho\right\|_{F}^{2}+\lambda \sum_{i \neq j}\left(\sum_{k=1}^{K}\left(\tilde{\triangle}_{k}\right)_{i j}^{2}\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Similar to [2], for all $i=1, \ldots, p$ and $k=1, \ldots, K$, the solution to problem (7) has $\left(\tilde{\triangle}_{k}\right)_{i i}=\left(\triangle_{k}^{t+1}+A_{k}^{t} / \rho\right)_{i i}$. While the off-diagonal elements take the form

$$
\begin{equation*}
\left(\tilde{\triangle}_{k}^{t+1}\right)_{i j}=\left(B_{k}\right)_{i j}\left(1-\frac{\lambda}{\rho\left\{\sum_{k=1}^{K}\left(B_{k}\right)_{i j}^{2}\right\}^{\frac{1}{2}}}\right)_{+} \tag{8}
\end{equation*}
$$

where $B_{k}=\triangle_{k}^{t+1}+A_{k}^{t} / \rho$. Based on the analysis above, the complete ADMM algorithm is summarized in Algorithm 1. This algorithm can be accelerated by adaptively changing ρ. We set $\rho=0.1$ and increase it iteratively by scaling it to $u \rho$. Here, we set $u=1.05$. In the implementation of the algorithm, the convergence condition is

$$
\begin{equation*}
\sum_{k=1}^{K}\left\|\triangle_{k}^{t+1}-\triangle_{k}^{t}\right\|<\varepsilon \cdot \max \left(1, \sum_{k=1}^{K}\left\|\triangle_{k}^{t}\right\|, \sum_{k=1}^{K}\left\|\triangle_{k}^{t+1}\right\|\right) \tag{9}
\end{equation*}
$$

where ε is a tolerance which is set to 10^{-3} in our experiments.

```
Algorithm 1 ADMM algorithm for the multi-view differential network analysis model.
Input:
sample covariance matrices \(\left\{\hat{\Sigma}_{X}\right\}\) and \(\left\{\hat{\Sigma}_{Y}\right\}\), parameter \(\lambda\).
Initialize:
\(t=0, A_{k}^{0}=0, \triangle_{k}^{0}=\widetilde{\triangle}_{k}^{0}=I, k=1, \ldots, K, \rho=0.1, u=1.05, \max _{\rho}=10^{10}, \varepsilon=10^{-3}\).
while (not converged) do
    \(1: t=t+1 ;\)
    2: fix the others and update \(\triangle_{k}, k=1, \ldots, K\) by \(\triangle_{k}^{t+1}=G\left(\left(\hat{\Sigma}_{X}^{k} \hat{\Sigma}_{Y}^{k}+\hat{\Sigma}_{Y}^{k} \hat{\Sigma}_{X}^{k}\right) / 2+\rho I, \hat{\Sigma}_{X}^{k}-\hat{\Sigma}_{Y}^{k}+\rho \tilde{\triangle}_{k}^{t}-A_{k}^{t}\right)\)
    3: fix the others and update \(\tilde{\triangle}_{k}, k=1, \ldots, K\) by \(\left(\tilde{\triangle}_{k}^{t+1}\right)_{i j}=\left(B_{k}\right)_{i j}\left(1-\frac{\lambda}{\rho\left\{\sum_{k=1}^{K}\left(B_{k}\right)_{i j}^{2}\right\}^{\frac{1}{2}}}\right)_{+}\);
    4: update the multipliers \(A_{k}^{t+1}=A_{k}^{t}+\rho\left(\triangle_{k}^{t+1}-\tilde{\triangle}_{k}^{t+1}\right), k=1, \ldots, K\)
    5: update the parameter \(\rho\) by \(\rho=\min \left(u \rho, \max _{\rho}\right)\)
    6: check the convergence conditions \(\sum_{k=1}^{K}\left\|\triangle_{k}^{t+1}-\triangle_{k}^{t}\right\|<\varepsilon \cdot \max \left(1, \sum_{k=1}^{K}\left\|\triangle_{k}^{t}\right\|, \sum_{k=1}^{K}\left\|\triangle_{k}^{t+1}\right\|\right)\).
```

end while

References

[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1122, 2011.
[2] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2):373-397, 2014.
[3] TENG ZHANG and HUI ZOU. Sparse precision matrix estimation via lasso penalized d-trace loss. Biometrika, 101(1):103-120, 2014.

