An andrographolide derivative AGP-26b exhibiting anti-angiogenic activity in HUVECs and zebrafish via blocking VEGFA/VEGFR2 signaling pathway

Bin Huang,^{†a} Yuran Peng,^{†b} Jingjing Li,^{†a,c} Shang Li,^a Yicheng Sun,^b Decai Wang,^b Binrui Yang, ^a Judy Yuet-Wa Chan,^a Huidong Yu,^d George Pak-Heng Leung^c, Maggie Pui-Man Hoi,^{*a} Guo-Chun Zhou,^{*b} Simon Ming-Yuen Lee^{*a}

^a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China;

^b School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.

^cDepartment of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China. ^dRongene Pharma Co., Ltd., International Business Incubator, Guangzhou Science Town, Guangdong 510663, China

*Correspondence:

(Hoi M.P.M.) Address: Institute of Chinese Medical Sciences, Room 7012, N22 Building, University of Macau, Avenide da Universidade, Taipa, Macau; Email: maghoi@umac.mo; Tel: (853)-88224876

(Zhou G.C.) Address: School of Pharmaceutical Sciences, Nanjing Tech University, 30S, Puzhu Road, Pukou District, Nanjing, China; Email: gczhou@njtech.edu.cn; Tel : (86)-25-58139415

(Lee S.M.Y.) Address: Institute of Chinese Medical Sciences, Room 7003, N22 Building, University of Macau, Avenide da Universidade, Taipa, Macau; Email: simonlee@umac.mo; Tel: (853)-88224695

[†] These authors contribute equally to this work

Contents:

Synthesis of AGP-26a and AGP-26b	s2
Spectra of ¹ H NMR and ¹³ C NMR	s6
HPLC data for AGP-26 (mixture of AGP-26a and AGP-26b)	s11
Crystal structure of AGP-26a	s12
Morphology observation of Andro, AGP-26, AGP-26a, AGP-26b on z	ebrafishs14

Synthesis of AGP-26a and AGP-26b

(1) Preparation of 16-aldolactol-3,19-acetonylidene-andrographolide (II)

To -78 °C cooled solution of 10.0 mmol of compound (**I**) (prepared from reference 25) dissolved in 50 ml dry dichloromethane under N₂, 8.0 ml (1.5 N) DIBAL-H solution in hexane was added dropwise. The reaction was completed in about 1 hour and then 5 ml ethyl acetate was added carefully at -78 °C before 5 ml saturated potassium sodium tartrate solution was added. After stirred at -78 °C for 5 min, the mixture was extracted with 150 ml ethyl acetate and washed with 150 ml saturated potassium sodium tartrate solution. Aqueous phase was extracted with ethyl acetate (2 x 100 ml) again and combined organic phase was washed with saturated potassium sodium tartrate solution. Organic phase was dried over anhydrous Na2SO4 and filtered, evaporated, the residue was silica gel chromatographed (ethyl acetate/dichloromethane 1/130) to give 68% yield of compound **II**: white solid; m.p. 115.2 - 116.1 °C; ¹H NMR (400 MHz, C₆D₆) δ 9.20 (s, 1H), 6.17 (dd, *J* = 6.6, 5.5 Hz, 1H), 5.15 (dd, *J* = 6.8, 4.1 Hz, 1H), 4.91 (s, 1H), 4.60 (s, 1H), 3.89 (d, *J* = 11.6 Hz, 1H), 3.73 – 3.65 (m, 1H), 3.57 (ddd, *J* = 11.2, 7.2, 4.2 Hz, 1H), 3.51 (dd, *J* = 7.8, 3.5

Hz, 1H), 3.13 (d, J = 11.6 Hz, 1H), 2.80 (ddd, J = 18.4, 5.1, 3.3 Hz, 1H), 2.70 (ddd, J = 18.2, 11.1, 6.7 Hz, 1H), 2.27 – 2.20 (m, 1H), 1.96 (ddt, J = 13.1, 7.9, 4.3 Hz, 1H), 1.86 – 1.61 (m, 3H), 1.60 – 1.53 (m, 1H), 1.49 (t, J = 6.4 Hz, 1H), 1.45 (s, 3H), 1.40 (s, 3H), 1.38 (d, J = 2.8 Hz, 1H), 1.23 – 1.16 (m, 1H), 1.15 (s, 3H), 1.13 – 1.01 (m, 2H), 0.99 (s, 3H), 0.92 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 193.1, 159.3, 147.9, 142.2, 109.4, 99.5, 75.7, 70.0, 65.9, 64.2, 57.0, 51.9, 38.5, 38.3, 38.0, 34.4, 26.9, 26.2⁴, 26.1⁶, 25.7, 25.4, 25.1, 23.4, 18.5, 16.9, -4.6, -4.8; HRMS (ESI) m/z: 529.3321 [M+Na]⁺, calculated for C₂₉H₅₀O₅SiNa, 529.3325.

(2) Preparation of TLC and silica gel chromatography inseparable mixture of (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan-3-yl)-2-methoxyethyl)-1-(hydroxymethyl)-1,4a-dimethyl-6-methylene-decahydronaphthalen-2-ol (AGP-26a, major) and (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan-3-yl)-2-methoxyethyl)-1-(hydroxymethyl)-1,4a-dimethyl-6-methylene-decahydronaphthalen-2-ol (AGP-26b, minor)

At 0 °C, 2.0 mmol of compound **II** was dissolved in 10 ml methanol and then 10 ml saturated hydrogen chloride methanol solution was added. The reaction was stirred at 0 °C for 1 hour before carefully treated with saturated NaHCO₃ solution at 0 °C. Extracted with ethyl acetate and washed with brine, organic phase was dried over anhydrous Na₂SO₄, filtered, evaporated to dryness. The residue was purified by silica gel chromatography (dichloromethane/methanol 90/1) to afforded (85% yield) the inseparable mixture of **AGP-26a** and **AGP-26b**.

(3) Preparation and separation of (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan-3-yl)-2-methoxyethyl)-1-((*t*-butyldimethylsilyloxy)methyl)-1,4a-dimethyl-6-meth ylene-decahydronaphthalen-2-ol (**IV**, major) and (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan-3-yl)-2-methoxyethyl)-1-((*t*-butyldimethylsilyloxy)methyl)-1,4a-dimethyl-6-methylene-decahydronaphthalen-2-ol (**III**, minor)

To the solution of 10.0 mml of the mixture of **AGP-26a** and **AGP-26b** in 30 ml dry chloromethane and 8.3 ml (60.0 mmol) of triethylamine, the solution of 7.5 g (50.0 mmol) of *t*-butyldimethylsilyl chloride in 10 ml dry dichloromethane were

s **3 /** s**13**

added dropwise below 25 °C. The reaction was monitored by thin-layer chromatography and completed in 1 hour. The reaction mixture was treated with ethyl acetate and saturated NaHCO₃ solution, organic phase was washed with brine, dried over anhydrous Na₂SO₄. After filtered and evaporated, the residue was separated by silica gel chromatography to provide less polar compound **IV** (petroleum/ethyl acetate 35/1) and more polar compound **III** (petroleum/ethyl acetate 33/1).

More polar compound **III** as minor derivative: 26% yield; white solid; m.p. 87.1 - 88.4 °C; ¹H NMR (400 MHz, C₆D₆) δ 7.15 (t, J = 1.5 Hz, 1H), 7.10 (s, 1H), 6.35 – 6.30 (m, 1H), 4.95 (d, J = 1.2 Hz, 1H), 4.86 (s, 1H), 4.23 (dd, J = 10.6, 3.6 Hz, 1H), 4.19 (d, J = 10.0 Hz, 1H), 3.83 (d, J = 7.1 Hz, 1H), 3.39 (d, J = 9.7 Hz, 1H), 3.20 (ddd, J = 11.6, 7.0, 4.3 Hz, 1H), 3.11 (s, 3H), 2.33 – 2.24 (m, 1H), 2.16 (ddd, J = 13.6, 11.5, 3.7 Hz, 1H), 2.03 – 1.85 (m, 2H), 1.84 – 1.63 (m, 2H), 1.62 – 1.50 (m, 2H), 1.43 (d, J = 11.2 Hz, 1H), 1.23 – 1.08 (m, 4H), 0.92 (s, 9H), 0.91 – 0.82 (m, 2H), 0.65 (s, 3H), 0.00 (d, J = 5.5 Hz, 6H); ¹³C NMR (101 MHz, C₆D₆) δ 148.4, 144.0, 141.4, 126.3, 108.8, 107.3, 79.7, 74.7, 65.5, 55.8, 55.4, 52.5, 43.0, 39.3, 38.7, 37.1, 31.4, 29.3, 25.9, 24.6, 23.2, 18.3, 15.7, -5.7, -5.8; HRMS (ESI) *m*/*z*: 485.3058 [M+Na]⁺, calculated for C₂₇H₄₆O₄SiNa, 485.3063.

Less polar compound **IV** as major derivative: 67% yield; white solid; m.p. 107.5 - 109.7 °C; ¹H NMR (400 MHz, C₆D₆) δ 7.14 (d, *J* = 1.9 Hz, 2H), 6.38 – 6.29 (m, 1H), 4.92 (d, *J* = 1.2 Hz, 1H), 4.52 (s, 1H), 4.23 (d, *J* = 10.0 Hz, 1H), 4.18 (dd, *J* = 10.3, 1.2 Hz, 1H), 3.89 (d, *J* = 7.2 Hz, 1H), 3.48 – 3.32 (m, 2H), 3.06 (s, 3H), 2.39 – 2.28 (m, 1H), 2.24 (d, *J* = 11.0 Hz, 1H), 2.08 – 1.86 (m, 3H), 1.84 – 1.52 (m, 4H), 1.40 – 1.28 (m, 1H), 1.26 (s, 3H), 1.19 (td, *J* = 12.7, 4.1 Hz, 1H), 1.09 (dd, *J* = 12.9, 2.2 Hz, 1H), 0.91 (s, 9H), 0.60 (s, 3H), -0.00 (d, *J* = 4.1 Hz, 6H); ¹³C NMR (101 MHz, C₆D₆) δ 148.8, 143.8, 139.9, 127.6, 109.0, 107.0, 79.9, 74.0, 65.6, 56.2, 55.3, 52.6, 43.1, 39.1, 38.7, 37.2, 32.8, 29.4, 26.0, 24.6, 23.4, 18.3, 15.7, -5.6⁸, -5.7³; HRMS (ESI) *m/z*: 485.3059 [M+Na]⁺, calculated for C₂₇H₄₆O4SiNa, 485.3063.

(4) Preparation of (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan- 3-yl)-2-methoxyethyl)-1-(hydroxymethyl)-1,4a-dimethyl-6-methylene-decahydronaphthalen-2-ol (**AGP-26a**, major) from **IV** and preparation of (1R,2R,4aS,5R,8aS)-5-((S)-2-(furan-3-yl)-2-methoxyethyl)-1-(hydroxymethyl)-1,4a-dimethyl-6-methylene-deca hydronaphthalen-2-ol (**AGP-26b**, minor) from **III**

2.0 mmol of Compound **III** or **IV** was dissolved in 10 ml THF and treated with 2.0 mmol of tetrabutylammonium fluoride (TBAF) for 2 hour at ambient temperature. After the reaction was completed, ethyl acetate and saturated NaHCO₃ solution were added and organic phase was washed with saturated NaHCO₃ solution, and dried over anhydrous Na2SO4. After filtered and evaporated under depressed pressure, the residue was purified by silica gel chromatography (dichloromethane/methanol 90/1) to give **AGP-26a** or **AGP-26b**.

AGP-26a (major) from IV: 92% yield; white solid; m.p. 159.2 - 161.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.68 – 7.57 (m, 2H), 6.46 (d, J = 1.4 Hz, 1H), 5.05 (d, J = 4.8 Hz, 1H), 4.83 (s, 1H), 4.42 (s, 1H), 4.13 (dd, J = 7.5, 2.7 Hz, 1H), 4.03 (d, J = 8.9 Hz, 1H), 3.83 (dd, J = 11.0, 2.6 Hz, 1H), 3.29 – 3.18 (m, 2H), 3.02 (s, 3H), 2.40 – 2.31 (m, 1H), 2.02 – 1.80 (m, 3H), 1.79 – 1.68 (m, 2H), 1.63 (td, J = 12.0, 11.0, 3.2 Hz, 2H), 1.54 – 1.42 (m, 1H), 1.32 (qd, J = 12.9, 4.0 Hz, 1H), 1.25 – 1.11 (m, 2H), 1.09 (s, 3H), 0.57 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 148.1, 143.7, 140.0, 126.4, 108.8, 106.7, 78.5, 73.1, 62.7, 55.6, 54.7, 51.8, 42.3, 38.4, 38.0, 36.6, 31.3, 27.9, 24.1, 23.0, 14.9; HRMS (ESI) m/z: 371.2192 [M+Na]⁺, calculated for C₂₁H₃₂O₄Na, 371.2198.

AGP-26b (minor) from **III**: 92% yield; white solid; m.p. 113.4 - 116.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (t, J = 1.5 Hz, 1H), 7.58 (s, 1H), 6.46 - 6.38 (m, 1H), 5.01 (d, J = 4.8 Hz, 1H), 4.84 (s, 1H), 4.64 (s, 1H), 4.08 (dd, J = 7.6, 2.8 Hz, 1H), 4.03 (dd, J = 10.3, 3.7 Hz, 1H), 3.79 (dd, J = 11.0, 2.8 Hz, 1H), 3.20 (dd, J = 10.8, 7.8 Hz, 1H), 3.09 (dt, J = 9.9, 5.3 Hz, 1H), 3.02 (s, 3H), 2.36 - 2.24 (m, 1H), 1.89 - 1.50 (m, 7H), 1.38 - 1.19 (m, 2H), 1.01 (s, 3H), 0.94 (dd, J = 12.6, 2.2 Hz, 1H), 0.74 (td, J = 12.3, 5.7 Hz, 1H), 0.60 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 147.9, 143.9, 141.5, 125.1, 108.4, 106.5, 78.4, 73.8, 62.6, 55.2, 54.6, 51.6, 42.2, 38.5, 37.9, 36.3, 30.1, 27.8, 24.0, 22.9, 15.0; HRMS (ESI) m/z: 371.2194 [M+Na]⁺, calculated for C₂₁H₃₂O₄Na, 371.2198.

Spectra of ¹H NMR and ¹³C NMR

$^1\mathrm{H}\,\mathrm{NMR}$ of Compound \mathbf{II}

920 6.617 6.61

¹³C NMR of Compound II

¹H NMR of Compound III

¹³C NMR of Compound **III**

 $^1\mathrm{H}\,\mathrm{NMR}$ of Compound \mathbf{IV}

 $^{13}\mathrm{C}$ NMR of Compound \mathbf{IV}

¹H NMR of Compound AGP-26a

¹³C NMR of Compound AGP-26a

¹H NMR of Compound AGP-26b

¹³C NMR of Compound AGP-26b

HPLC data for AGP-26 (TLC and silica gel chromatography inseparable mixture of AGP-26a and AGP-26b)

C 18 Sunfire 4.6x250mm 5µm

Eluents: 80% methanol + 20% purified water

rate = 0.8mL/min

detection wavelength: 220 nm

12.953 min AGP-26a, 80%

Crystal structure of AGP-26a (CCDC 14156500)

Morphology observation of Andro, AGP-26, AGP-26a and AGP-26b on

Zebrafish

Figure S14 Morphology observation of Andro, AGP-26, AGP-26a and AGP-26b on zebrafish at 8 hpt. 24 hpf embryos were treated with 30-300µM Andro, AGP-26, AGP-26a and AGP-26b for 8 h. Then take photos of zebrafish embryos at 32hpf (24hpf+8hpt). Embryos receiving DMSO served as a vehicle control.