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Mathematical model of purine metabolism in human. A published kinetic model of 

human purine metabolism was used as a computational platform; it consists of 16 ordinary 

differential equations with 37 fluxes 1, 2. In the literature, the fluxes were formulated either as 

traditional Michaelis-Menten kinetics or as power law functions under the tenets of 

Biochemical Systems Theory 3. Here we chose the latter. Many parameters were obtained 

from experimental and clinical data in humans, and the remaining values were 

estimated using biological constraints, such as the ratio of adenine and guanine in 

nucleic acids, which is approximately 3/2, or the fact that normal subjects excrete 

about 420 mg per day of UA in urine. A detailed analysis of the steady-state properties 

of the mathematical model demonstrated that the steady state is stable and robust. 

Analysis also showed that the model is not sensitive to parameter changes. Simulations 

of normal and pathological perturbations of purine metabolism yielded consistent 

results with some representative biochemical and clinical observations. All these 

analyses are described in great detail in the literature 3.

Implementation of enzyme activities altered by cancer. Weber discovered several 

changes in the enzyme activities of purine metabolism in human renal carcinoma cells 4. The 

affected enzymes and their fold changes compared to normal kidney cells are listed in Table 

S4. These alterations are expected to result in changed metabolite levels between normal 

human cells and human renal cell carcinoma, which were computed with the mathematical 

model, and the values at the corresponding steady state are shown in Table 1 in the Text.
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Details regarding the inference algorithm. The first phase of the algorithm is composed 

of three steps, which are designed to identify primary metabolic alterations, whereas the second 

phase targets secondary mechanisms. 

In the first step, the reaction rates of all enzymes, transporters, and non-enzymatic reaction 

steps are simultaneously, independently, and randomly varied within a range of [0.5, 1.5] times 

their nominal values. This range corresponds to perturbations ranging from 50% inhibition to 

50% over-activation. The perturbations at each candidate site were sampled from the 

corresponding uniform distribution. The purpose of this first step is to reduce the number of 

possibly affected candidate sites based on only qualitative information, namely the direction 

(increase or decrease) of changes in metabolite levels observed in the cancer study. Expressed 

differently, we focus exclusively on the signs of changes rather than exact values. There are 

totally 27 candidate target sites, which determine the dimension of the original parameter space.

Each simulation of this type results in a metabolic profile, which is compared with the 

metabolomics data. To retain sufficiently many candidate sites for the following steps, we 

perform the comparison only with respect to measured metabolites that exhibit significant 

changes between disease and healthy cells. A threshold of ±10% appears reasonable for this 

step, as smaller changes are presumably not biologically significant. Of course, this threshold 

can be changed if it is deemed beneficial.

From millions of simulations, only those results are kept that result in metabolic profiles 

with the same types of increases or decreases as the experimentally or clinically measured 

metabolites. Collecting these results leads, for each candidate enzyme, to a distribution of 

admissible alterations within a range between 0.5 and 1.5 of the normal level. Within such a 

distribution, a value in the range [0.5, 1.0) indicates an inhibitory action, while values within 

the range (1.0, 1.5] show activation. A clearly skewed or a shifted distribution away from the 

uniform input distribution suggests that the metabolic changes are likely affected significantly 



by either one or the other action: inhibition or activation of the enzyme. 

To determine the skewness of a distribution, we defined an index, which distinguishes 

whether values are distributed toward inhibition or activation and whether values on the other 

side are noise rather than exhibiting statistical significance. For this purpose, we compute the 

areas of the inhibitory part of the distribution (lower than the normal value of 1) and that of the 

activating part (higher than the normal value of 1). The index of skewness is the quotient 

between the smaller area and the whole area. Thus, each candidate enzyme has a computed 

index. For a high index (close to 0.5), the distribution has very low skewness, which suggests 

that cancer does not likely target this enzyme. We use for this first step a rather permissive 

value of 0.4; above this threshold, the corresponding enzyme is removed from the candidate 

list. Although this filter is rather coarse, experience shows that it often reduces the admissible 

set of solutions quite a bit, but that it does not reduce it to a degree where hardly any candidates 

are left.

For the second step, we perform simulations similar to those in the first step but now 

consider only those candidate sites surviving the filtering in the first step. Furthermore, we 

assess actual changes in the concentrations of metabolites and not just directions of change. 

Correspondingly, the filtering criterion is different. We run one million simulations of random 

perturbations simultaneously and independently sampled from uniform distributions on the list 

of survived candidate sites while allowing perturbations within a range of [0.2, 5.0]. This range 

of up to 5-fold deviations from normalcy was selected based on enzymological studies of 

cancer. The difference between each simulated metabolic profile and the data is again assessed 

using the Euclidean metric. The one thousand sets of hypothesized enzyme alterations with the 

smallest differences are selected for the next step. In contrast to the first step, the second step 

shrinks the kinetic parameter space based on quantitative comparisons of all metabolites in 

profiles.



In the third step, a genetic algorithm uses the selected one thousand sets as initial values 

for generating ensembles of truly “good” solutions. Specifically, for each set of enzymatic 

changes identified in the second step, the algorithm finds an optimized solution. However, there 

is no guarantee that every optimized solution is better than the best solution found in the second 

step, and to retain the best solutions, we select a subset of hypothesized enzyme combinations 

only if they are better than the best solution found in the second step. As before, we generate 

distributions of alterations for each candidate enzyme and analyze their skewness. At this point, 

we want to determine the most likely target sites, and therefore use a value 0.05 as the 

significance threshold. If an index is less than 0.05, cancer has a very high probability of either 

activating or inhibiting this enzymatic or non-enzymatic biochemical process. This conclusion 

implies a cancer target with statistical confidence. Thus, not only are the locations of targeted 

sites inferred, but the corresponding distribution also shows the intensity of a cancer-caused 

alteration at a site.

The above three steps yield the discovery of primary disease actions from metabolomics 

data, which account for the strongest effects of cancer on a metabolism. The second phase 

contains steps 4 and 5, which are designed to identify secondary mechanisms that contribute 

to the remaining alterations of metabolites. The two steps of the second phase are like steps 2 

and 3 of the first phase, with the important exception that at this point the inferred primary 

actions had been fixed as median values in the model. 

Again, one million random simulations are run with a perturbation range of [0.2, 5.0] 

during the fourth step. The top one thousand sets of hypothesized combinations of enzyme 

alterations are used as the initial values for a genetic algorithm in the fifth step. The optimized 

disease actions are again evaluated for skewness of the distributions at each candidate site. 

Those with significant skewness are considered as the secondary action sites of the disease. 

Sampling, homogeneity, and computational load. For steps 1, 2, and 4, Monte Carlo 



sampling was used to obtain random parameter values in corresponding high-dimensional 

spaces. For each candidate site, five million (1st step), one million (2nd step), and one million 

(4th step) samples were randomly extracted from its uniform distribution. Therefore, the joint 

probability distribution of all random variables in a corresponding high-dimensional space is 

approximately a normal distribution following the central limit theorem. Accordingly, the 

samples are not homogeneous in each of the high-dimensional parameter spaces. However, 

sampling homogeneity is not required by our method. During each of these steps, only a subset 

of samples is screened out from a large number of random samples and forms an admissible 

subpopulation, which resides in a subspace in the corresponding high-dimensional parameter 

space. Provided that sufficiently many samples in the subspace are collected and entered in the 

admissible set, homogeneity is not crucial to the performance of our method. Our previous 

studies indicated that even some much smaller numbers of Monte Carlo sampling can reliably 

meet this criterion and produce robust conclusions about disease actions 5, 6. Nevertheless, 

sampling with better homogeneity may greatly increase the chance of reaching targeted 

parameter values belonging to admissible subpopulations, and can thus greatly reduce the 

intensive computation. In this way, our method can be improved and applied to larger 

metabolic networks.

Computation of the Euclidean and the Jeffreys & Matusita metrics. The formulae and 

characteristics of the Euclidean and the Jeffreys & Matusita metrics for the distance between 

two metabolic profiles are shown in Table S5.



Table S1. Enzymes in purine metabolism

Enzyme or reaction Abbreviation EC Number

Hypoxanthine-guanine phosphoribosyltransferase HGPRT 2.4.2.8

GMP synthetase GMPS 6.3.5.2

Adenylosuccinate lyase ASLI 4.3.2.2

GMP reductase GMPR 1.7.1.7

AMP deaminase AMPD 3.5.4.6

5’(3’) Nucleotidase 3NUC 3.1.3.31

Diribonucleotide reductase DRNR 1.17.4.1

Adenosine deaminase ADA 3.5.4.4

DNA polymerase DNAP 2.7.7.7

DNases DNAN #

Guanine hydrolase GUA 3.5.4.3

‘hypoxanthine excretion’ hx $

‘xanthine excretion' x $

`uric acid excretion' ua $

Phosphoribosylpyrophosphate synthetase PRPPS 2.7.6.1

Amidophosphoribosyltransferase ATASE 2.4.2.14

Adenine phosphoribosyltransferase APRT 2.4.2.7

`pyrimidine synthesis' PYRS #

IMP dehydrogenase IMPD 1.1.1.205

Adenylosuccinate synthetase ASUC 6.3.4.4

Methionine adenosyltransferase MAT 2.5.1.6

Protein O-methyltransferase MT
2.1.1.77, 2.1.1.80, 

and 2.1.1.100

S-adenosylmethionine decarboxylase SAMD 4.1.1.50

5’-Nucleotidase 5NUC 3.1.3.5



RNA polymerase RNAP 2.7.7.6

RNases RNAN #

Xanthine oxidase or xanthine dehydrogenase XD
1.17.1.4 and 

1.17.3.2

#: Multiple enzymes.

$: Non-enzymatic reaction.



Table S2. Predictions of secondary cancer mechanisms

Enzyme or reaction Abbreviation EC Comment on prediction

Adenylosuccinate synthetase ASUC 6.3.4.4
Correct prediction of site, 

but wrong mode of action

Amidophosphoribosyltransferase ATASE 2.4.2.14 Correct prediction

Adenylosuccinate lyase ASLI 4.3.2.2 Missed

adenosine monophosphate deaminase AMPD 3.5.4.6 Missed

Uric acid excretion VUA Wrong prediction



Table S3. Robustness of the method for inferring primary cancer actions using 

randomly incomplete metabolomics data

Statistical measures Value

Positive predictive value 92%

False discovery rate 8%

Sensitivity 19.17%



Table S4. Implementation of enzymatic alterations in human renal carcinoma cells in 

the mathematical model of purine metabolism

Altered enzymes Abbreviation Fold changes in maximum activity#

Amidophosphoribosyltransferase ATASE 1.58

IMP dehydrogenase IMPD 2.53

Adenylosuccinate synthetase ASUC 1.49

Adenylosuccinate lyase ASLI 1.76

adenosine monophosphate deaminase AMPD 2.07

xanthine oxidase or xanthine 

dehydrogenase
XD 0.25

#: Fold changes were directly multiplied to maximum activity of an altered enzyme.



Table S5. Metrics for comparison of metabolic profiles and their characteristics

Metrics Formula Characteristics

Euclidean distance
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