Molecular Biosystems

Effect of Global Transcriptional Regulators on anaerobic fermentative metabolism of *Escherichia coli*

Manika Kargeti ^a and K.V.Venkatesh^{*}

Figure S1: Slopes of concentration of formate versus biomass concentration for WT, Δfis , Δfnr , $\Delta arcA$, $\Delta ihfA$, $\Delta ihfB$ and Δcrp . Note that, the value of this slope gives the yield of formate per biomass, $Y_{g(formate)|g(biomass)}$.

Figure S1 shows the linear relationship between formate concentration and biomass, indicating that formate is a growth associated product. The value of the slope is different for the strains, indicating different carbon distribution for each strain.

Figure S2: Slopes of concentration of acetate versus biomass concentration WT, Δfis , Δfnr , $\Delta arcA$, $\Delta ihfA$, $\Delta ihfB$ and Δcrp . Note that, the value of this slope is the yield of acetate per biomass, $Y_{g(acetate \mid g(biomass))}$.

Figure S2 shows that acetate concentration has a linear relationship with biomass, indicating that acetate is a growth associated product. The slope for all the strains is different from each other, indicating different carbon distribution towards acetate for each strain.

Figure S3: Flux distribution in the central carbon metabolism in the WT strain under anaerobic fermentation conditions. Note that the fluxes are normalized with glucose uptake rate (16.95 mM/g(dcw)*h). The flux values on the top are from current study and the bottom are as reported by 13-C study in Chen *et al*.²² Chen *et al.*, have reported the glucose uptake rate to be (14.9 mM/g(dcw)*h)). The mixed acids are abbreviated as LAC for lactate, FORM for formate, ACT for acetate, ETH for ethanol and SUCC for succinate

Figure S4 : Flux distribution in the central carbon metabolism in the WT, Δfis , Δfnr , and $\Delta arcA$ strain under anaerobic fermentation conditions, from top to bottom. Note that the fluxes are normalized with respective glucose uptake rate for each strain. The mixed acids are abbreviated as LAC for lactate, FORM for formate, ACT for acetate, ETH for ethanol and SUCC for succinate.

Figure S5 : Flux distribution in the central carbon metabolism in the WT, Δihf -A, Δihf -B Δcrp strain under anaerobic fermentation conditions, from top to bottom. Note that the fluxes are normalized with respective glucose uptake rate for each strain. The mixed acids are abbreviated as LAC for lactate, FORM for formate, ACT for acetate, ETH for ethanol and SUCC for succinate.

Figure S6: (A) Distribution of fluxes at G6P node in WT and six global transcription factor deletion mutants. A variation of maximum 4 % is noted, indicating the robustness of this node. (B) Distribution of fluxes at pyruvate node. The major part of the fluxes through this node is channeled towards glycolysis and formate production and the various was subtly different.

The distribution of carbon fluxes on these nodes is similar for all the strains, indicating the robustness of these strains and also indicating that the deletion of global transcription factors may not affect the distribution of fluxes. Rather, deletion can affect the absolute fluxes of the metabolites.

Figure S7: (A) Distribution of fluxes at PEP node in WT and six global transcription factor deletion mutants. The major carbon flux at this node is directed towards pyruvate and PTS branches (B) Distribution of fluxes at AccoA node. The major part of the fluxes through this node is channeled towards acetate and ethanol production.

The distribution of carbon fluxes on these nodes is similar for all the strains, indicating the robustness of these strains and also indicating that the deletion of global transcription factors may not affect the distribution of fluxes. Rather, deletion can affect the absolute fluxes of the metabolites.

Regulation of Central carbon Metabolism genes by transcription factors under study

Global	Genes			
regulators	Positive influence	Negative influence		
CRP	ptsG ² , ptsH ⁸ , gltA ¹ , acnA ¹ , acnB, icdA ¹ , sdhCDAB ¹ , cyo ⁹ , fumAC, acs ⁹ , gap ⁹ , aceEF ⁹ , pdhR ⁹ , lpdA, fumB, cyo, pdhR, ackA ¹⁰ , fba ¹¹ , gapA ¹¹ , pgk ¹¹	cya, fis, aceBA ⁹ , crp-cAMP ¹⁵		
Fis	ptsG, adhE, hyaA-F ⁹ , nuoA-N, ndh, lpd ¹⁵	ptsG, fis, crp ⁶ , (cAMP) cya ⁶ , acnB ⁹ , acs ⁹ , fumB, aldB, pflB ¹⁵		
FNR	foc-pflB ² , frd ² , arcA ² , adhE ¹² , yfiD ³ , fumB ³ , aspA ³ , pykA ³	cyd ² , cyoAE ^{2,12} , gltA ¹ , acnA ¹ , icdA ¹ , fumAC ^{1,12} , ndh ⁵ , nuoE ⁵ , aceBA ⁹ , sucABCD ¹² , sdhCDAB ¹² , yfiD ¹²		
ArcA	focA-pflB ² , cyd ² , frd ⁴ , hyaA-F ⁹ , fumB, hyaA-1 ¹² , yfiD ¹² , appBC ¹² ,	fnr, ptsG, cyo ² , pdh ² , gltA ² , acnAB, ^{2,12} , icdA ² , sucABCD ² , sdhCDAB ^{2,14} , fumA ² , mdh ² , aceBAKEF ¹ , aceEF-Ipd ^{1,14} , pykA ³ , Idh, acs ⁹ , glcDEFG ⁹ , ndh ¹²		
IHF	fis, fnr, aceBAK ⁹ , glcDEFG ⁹ , hycA-I ⁹ gltA, focA-pflB ¹⁵	pta ⁷ , ack ⁷ , sucABCD ⁹ , ndh, nuoA, sucABCD ¹⁵		

Table S1: This table gives an account of central carbon metabolism genes induced and repressed

by global transcription factors studied.

Stoichiometry	Reactions	
0.14176 Glyc3P + 26.2949 ATP + 0.60097 Ala + 0.10124 Cys + 0.26647 Asp +	mue	
0.30747 Glu + 0.2048 Phe + 0.67725 Gly + 0.10473 His + 0.32116 lle +		
0.37935 Lys + 0.49804 Leu + 0.16989 Met + 0.26647 Asn + 0.24436		
Pro + 0.29091 Gln + 0.32698 Arg + 0.38031 Ser + 0.28044 Thr +		
0.46778 Val + 0.062835 Trp + 0.15244 Tyr + 0.1489 rATP + 0.18319		
rGTP + 0.11366 rCTP + 0.12273 rUTP + 0.023904 dATP + 0.024582		
dGTP + 0.024582 dCTP + 0.023904 dTTP + 0.28352 avg_FS +		
0.0069264 UDPGlc + 0.010368 CDPEth + 0.010368 OH_myr_ac +		
0.010368 C14_0_FS + 0.010368 CMP_KDO + 0.010368 NDPHep +		
0.0069264 TDPGlcs + 0.01656 UDP_NAG + 0.01656 UDP_NAM +		
0.01656 di_am_pim + 0.0924 ADPGlc ==>		
==> 02	O2_up	
==> N	N_up	
CO2 <==>	CO2_ex	
4 ATP + 4 NADPH ==> S	S_up	
PEP ==> G6P + Pyr	Glc_PTS_up	
ATP ==> G6P	Glc_ATP_up	
Succ ==>	Succ_ex	
==> Glyc	Glyc_up	
ATP + Glyc ==> Glyc3P	Glyc::Glyc3P	
DHAP + NADH <==> Glyc3P	DHAP::Glyc3P	
Lac ==>	Lac_ex	
Eth ==>	Eth_ex	
Ac ==>	Ac_ex	
==> Glucn	Glucn_up	
Form ==>	Form_ex	
G6P <==> F6P	G6P::F6P	
F16P ==> F6P	F16P::F6P	
F6P + ATP ==> F16P	F6P::F16P	
F16P <==> DHAP + G3P	F16P::T3P	
DHAP <==> G3P	DHAP::G3P	
G3P <==> DPG + NADH	G3P::DPG	
DPG <==> 3PG + ATP	DPG::3PG	

3PG <==> 2PG	3PG::2PG	
2PG <==> PEP	2PG::PEP	
PEP ==> Pyr + ATP	PEP::PYR	
Pyr + 2 ATP ==> PEP	Pyr::PEP	
Pyr ==> AcCoA + NADH + CO2	PYR::AcCoA	
AcCoA + OxA ==> Cit	AcCoA::Cit	
Cit <==> ICit	Cit::ICit	
ICit <==> alKG + NADPH + CO2	ICit::alKG	
alKG ==> SuccCoA + NADH + CO2	alKG::SuccCoA	
SuccCoA <==> Succ + ATP	SuccCoA::Succ	
Succ ==> Fum + QuiH2	Succ::Fum	
Fum + QuiH2 ==> Succ	Fum::Succ	
Fum <==> Mal	Fum::Mal	
Mal <==> OxA + NADH	Mal::OxA	
ICit ==> Succ + Glyox	ICit::Glyox	
AcCoA + Glyox ==> Mal	Glyox::Mal	
G6P <==> PGlac + NADPH	G6P::PGlac	
AcCoA + NADH <==> Adh	AcCoA::Adh	
NADH + Adh <==> Eth	Adh::Eth	
PGlac ==> PGluc	PGlac::PGluc	
Glucn + ATP ==> PGluc	Glucn::PGluc	
PGluc ==> RI5P + NADPH + CO2	PGluc::RI5P	
RI5P <==> X5P	RI5P::X5P	
RI5P <==> R5P	RI5P::R5P	
R5P + X5P <==> G3P + S7P	Transket1	
G3P + S7P <==> F6P + E4P	Transaldo	
E4P + X5P <==> F6P + G3P	Transket2	
PGluc ==> KetoPGluc	PGluc::KetoPGluc	
KetoPGluc <==> G3P + Pyr	KetoPGluc::G3P_Py	
	r	
OxA + ATP ==> PEP + CO2	OxA::PEP	
PEP + CO2 ==> OxA	PEP::OxA	
AcCoA <==> AcP	AcCoA::AcP	

AcP <==> ATP + Ac	AcP::Ac
Pyr ==> AcCoA + Form	Pyr::Form
Pyr + NADH <==> Lac	Pyr::Lac
NADH <==> QuiH2 + 2 H_ex	NADHDehydro
QuiH2 + 0.5 O2 ==> 2 H_ex	Oxidase
NADH + H_ex <==> NADPH	TransHydro
3 H_ex <==> ATP	ATPSynth
ATP ==>	ATPdrain
2 PEP + E4P + ATP + NADPH ==> Chor	Chor_Synth
R5P + 2 ATP ==> PRPP	PRPP_Synth
ATP + NADPH <==> MTHF	MTHF_Synth
Pyr + Glu ==> alKG + Ala	Ala_Synth
2 Pyr + NADPH + Glu ==> alKG + CO2 + Val	Val_Synth
2 Pyr + AcCoA + NADPH + Glu ==> alKG + NADH + 2 CO2 + Leu	Leu_Synth
2 ATP + N + Asp ==> Asn	Asn_Synth
OxA + Glu ==> alKG + Asp	Asp_synth
di_am_pim ==> CO2 + Lys	Lys_Synth
SuccCoA + ATP + 2 NADPH + MTHF + Cys + Asp ==> Pyr + Succ + N + Met	Met_Synth
2 ATP + 2 NADPH + Asp ==> Thr	Thr_Synth
Pyr + NADPH + Glu + Thr ==> alKG + CO2 + N + lle	lle_Synth
ATP + PRPP + GIn ==> alKG + 2 NADH + His	His_Synth
alKG + NADPH + N ==> Glu	Glu_synth
ATP + N + Glu ==> Gln	Gln_Synth
ATP + 2 NADPH + Glu ==> Pro	Pro_Synth
AcCoA + 4 ATP + NADPH + CO2 + N + Asp + 2 Glu ==> alKG + Fum + Ac + Arg	Arg_Synth
Chor + PRPP + Gln + Ser ==> G3P + Pyr + CO2 + Glu + Trp	Trp_Synth
Chor + Glu ==> alKG + NADH + CO2 + Tyr	Tyr_Synth
Chor + Glu ==> alKG + CO2 + Phe	Phe_Synth
3PG + Glu ==> alKG + NADH + Ser	Ser_Synth
Ser ==> MTHF + Gly	Gly_Synth
AcCoA + S + Ser ==> Ac + Cys	Cys_Synth
5 ATP + CO2 + PRPP + 2 MTHF + 2 Asp + Gly + 2 Gln ==> 2 Fum + NADPH + 2	rATP_Synth
Glu + rATP	

6 ATP + CO2 + PRPP + 2 MTHF + Asp + Gly + 3 Gln ==> 2 Fum + NADH + NADPH	rGTP_Synth	
+ 3 Glu + rGTP		
ATP + Gln + rUTP ==> Glu + rCTP	rCTP_Synth	
4 ATP + N + PRPP + Asp ==> NADH + rUTP	rUTP_Synth	
NADPH + rATP ==> dATP	dATP_Synth	
NADPH + rGTP ==> dGTP	dGTP_Synth	
NADPH + rCTP ==> dCTP	dCTP_Synth	
2 NADPH + MTHF + rUTP ==> dTTP	dTTP_Synth	
8.24 AcCoA + 7.24 ATP + 13.91 NADPH ==> avg_FS	avg_FS_Synth	
G6P + ATP ==> UDPGIc	UDPGlc_Synth	
3PG + 3 ATP + NADPH + N ==> NADH + CDPEth	CDPEth_Synth	
7 AcCoA + 6 ATP + 11 NADPH ==> OH_myr_ac	OH_myr_ac_Synth	
7 AcCoA + 6 ATP + 12 NADPH ==> C14_0_FS	C14_0_FS_Synth	
PEP + R5P + 2 ATP ==> CMP_KDO	CMP_KDO_Synth	
1.5 G6P + ATP ==> 4 NADPH + NDPHep	NDPHep_Synth	
F6P + 2 ATP + N ==> TDPGlcs	TDPGIcs_Synth	
F6P + AcCoA + ATP + Gln ==> Glu + UDP_NAG	UDP_NAG_Synth	
PEP + NADPH + UDP_NAG ==> UDP_NAM	UDP_NAM_Synth	
Pyr + SuccCoA + ATP + 2 NADPH + Asp + Glu ==> alKG + Succ + di_am_pim	di_am_pim_Synth	
G6P + ATP ==> ADPGIc	ADPGIc_Synth	

Table S2: This table gives an account of reactions used in flux balance analysis (adopted from

Klamt *et al.*)³⁰

Accumulation rates of metabolites in mid exponential phase

Rates(mM/(g(dcw)*h)	Acetate	Formate	Lactate	Succinate	Ethanol	Glucose
WT	11.91±0.09	26.25±0.25	0.5±0	1.18±0.06	13±0	16.95±0.05
Δfis	15±0	32±0	0.91±0.5	0.3±0	15.7±0	20±0
Δfnr	15.99±0.01	34.25±0.25	1.05±0	0.23±0	16.67±0.67	20.43±0.78
ΔarcA	14.4±0.3	30.5±0.5	0.5±0	1.42±0.37	14.3±0.09	17.4±0.4
Δihf-A	10±0	21±0	0.7±0	1.01±0	7.22±0.02	12.25±0.25
Δihf-B	5.7±0.3	12.5±0.5	0.44±0.01	0.13±0.02	7.4±0.6	7.5±0
Δcrp	7.6±0.1	14.78±0.22	0.18±0.04	0.36±0.01	9.88±0.12	10.25±0.25

Table S3: Accumulation rates of various metabolite production and glucose consumption in mid exponential phase for WT and six global transcription deletion mutants. The above rates were used for flux balance analysis for each strain. The analysis indicated that carbon channeling through different metabolic fluxes is subtly regulated by transcription factors through metabolic enzymes. Note that, all the rates are represented as mM/(g(dcw)*h).

References

- 1. A. Perrenoud and U. Sauer, *J Bacteriol*, 2005, **187**, 3171-3179.
- 2. K.Shimizu, ISRN Biochem, 2013, 1–47.
- 3. S. S. Levanon, K. Y. San and G. N. Bennett, *Biotechnol Bioeng*, 2005, 89, 556–564.
- 4. G. Cecchini, I.Schroder, R. P. Gunsalus and E. Maklashina, *Biochim Biophys Acta*, 2002,**1553**, 140–157.
- K.A. Salmon, S.P. Hung, N.R. Steffen, R. Krupp, P. Baldi, G.W. Hatfield, and R.P. Gunsalus, J Biol Chem, 2005, 280, 15084-15096.
- D.Ropers, H. de Jong, M.Page, D. Schneider and J. Geiselmann, *BioSystems*, 2006, 84, 124– 152.
- 7. T. Bykowski and A. Sirko, *Biochimie*, 1998, **80**, 987–1001.
- 8. T. Shimada, N. Fujita, K. Yamamoto and A. Ishihama, *PLoS One*, 2011, 6.
- M.D Rolfe, A. Ter Beek, A.I.Graham, E.W. Trotter, H.S. Asif, G. Sanguinetti, J.T. de Mattos, R.K. Poole, and J. Green, *J Biol Chem*, 2011, 286, 10147–10154.
- 10. G. Gosset, Z. Zhang, S. Nayyar, W. A. Cuevas and M. H. Saier, *J Bacteriol*, 2004, **186**, 3516–3524.
- V. Baldazzi, D. Ropers, Y. Markowicz, D. Kahn, J. Geiselmann and H.De Jong, *PLoS Comput Biol*, 2010, *6*, 1000812.
- 12. E. W. Trotter *et al.*,*PLoS One* 2011,**6**, 1–7.
- 13. S.Steinsiek, S. Stagge and K. Bettenbrock, *PLoS One* ,2014, 9.
- 14. S. Federowicz *et al.*, *PLoS Genet.* 2014, **10**.
- 15. I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil and P. D. Karp, *Nucleic Acids Res*, 2005, **33**, 334-337.