Supplement: Optimal parameter values for control of gene regulation.

R G Brajesh, Nikhil Raj, and Supreet Saini*

Department of Chemical Engineering, Indian Institute of Technology Bombay

Powai, Mumbai – 400 076, India

*Email: saini@che.iitb.ac.in, Phone: 91 22 2576 7216

A - Benefit Curve (b)

B - Benefit Curve (c)

Supplementary Figure S1. <u>Frequency distribution of optimal parameter sets.</u> Frequency distribution of each of the six parameters (obtained from independent runs of NLP solver) that define performance of network 1A and benefit curve (b) and (c).

```
A – Benefit curve (b)
```


B – Benefit curve (c)

Supplement Figure S2. <u>Pair wise analysis of biochemical parameters of activator</u> <u>topology (1A) for benefit curve (b) and (c)</u>. Pairwise analysis of basal expression of regulator, regulator degradation rate, rate of conversion of R to R* and rate of conversion of R* to R. Basal regulator expression and its degradation rate, and rate of conversion of R to R* and rate of conversion of R* to R, observed as highly correlated. Other parameters pairs does not show any specific correlations.

B – Benefit curve (c)

Supplementary Figure S3. <u>Frequency distribution of optimal parameter sets.</u> Frequency distribution of each of the six parameters (obtained from independent runs of NLP solver) that define performance of network 1B and benefit curve (b) and (c).

A – Benefit curve (b)

B – Benefit curve (c)

Supplement Figure S4. <u>Pair wise analysis of biochemical parameters of repressor</u> topology (1B) for benefit curve (b) and (c). Pairwise analysis of basal expression of regulator, regulator degradation rate, rate of conversion of R to R* and rate of conversion of R* to R. Basal regulator expression and its degradation rate, and rate of conversion of R to R*

and rate of conversion of R* to R, observed as highly correlated. Other parameters pairs does not show any specific correlations.

Supplementary Table T1: Pairwise correlation-coefficients for parameters for topology in Figure 1A and benefit curves (b) and (c). [Correlations highlighted in green are statistically significant]

A -Benefit curve (b)

	k	Bas	k _r
k			
bas	0.2010		
k _r	0.9840	0.0235	
k _d	0.2010	1.00	0.0235

B - Benefit curve (c)

	k	Bas	k _r
k			
bas	0.2145		
k _r	0.9999	0.2040	
k _d	0.2145	1.00	0.2040

Supplementary Table T2: Pairwise correlation-coefficients for parameters for topology in Figure 1B and benefit curves (b) and (c). [Correlations highlighted in green are statistically significant]

A - Benefit curve (b)

	k	bas	k _r
k			
bas	0.4138		
k _r	1.000	0.4080	
k _d	0.4138	1.000	0.4080

B - Benefit curve (c)

	К	Bas	k _{rev}
К			
bas	-0.2173		
k _{rev}	1.000	-0.2174	
kd	-0.2173	1.000	-0.2174