Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017

SUPPLEMENTARY TABLE:

Supplementary	y Table 1: List of SNPs associated with risk of	prostate cancer selected for the current study

Gene symbol	Gene name	Reason for inclusion in this study	Chromosomal Location	SNP ID	Tested Allele	Reference
SEP15	15 kDa selenoprotein	SEP15 encodes a selenoprotein, which contains a selenocysteine residue at its active site. This gene is localized on a genetic locus commonly mutated or deleted in human cancers.	1p22.3	rs5845	С	[1]
PTGS2	Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)	PTGS2 is responsible for the production of inflammatory prostaglandins. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays important roles in modulating motility, proliferation and resistance to apoptosis.	1q25.2-q25.3	rs12042763	G	[2]
MDM4	Double minute 4 protein	<i>MDM4</i> is involved in the p53 pathway	1q32	rs1380576	С	[3]
GGCX	Gamma-glutamyl carboxylase	The 2p region is a "gene-rich region" and the SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	2p12	rs10187424	С	[4]
EHBP1	EH domain binding protein 1	The single nucleotide polymorphism in this gene is associated with aggressive prostate cancer. Alternate splicing also results in multiple	2p15	rs721048	A	[5]
		transcript variants.		rs2710647	С	[6]
THADA	Thyroid adenoma associated	SNPs in this region are associated with type 2 diabetes and obesity.	2p21	rs1465618	А	[7]
SRD5A2	Steroid-5-alpha-reductase, alpha polypeptide 2	<i>SRD5A2</i> encodes a microsomal protein expressed at high levels in	2p23.1	rs632148	С	[8, 9]

		androgen-sensitive tissues such as the prostate.				
ITGA6	integrin α-6	The strongest SNP in the <i>ITGA6</i> locus, (rs12621278) has previously been reported to be associated with a 2.4-fold increased risk of prostate cancer progression.	2q31	rs12621278	G	[10, 11]
CYP1B1	Cytochrome P450, family 1, subfamily B, polypeptide 1	The gene <i>CYP1B1</i> encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in the synthesis of cholesterol, steroids and other lipids.	2p21–p22	rs1056827	Т	[12, 13]
MLPH	melanophilin	It has been reported that a higher melanophilin level in prostate tissue of patients with a favourable prostate cancer risk profile points out a tumour-suppressive effect.	2q37.2	rs2292884	А	[14]
FYCO1	FYVE and coiled-coil domain containing 1	The single nucleotide polymorphism was associated with a risk for prostate cancer.	3p21.3	rs1545985	А	[15]
GPX1	glutathione peroxidase 1	Various studies have suggested anticarcinogenic effects of selenium which are probably mediated through cellular protective and redox properties of selenoenzymes <i>in vivo</i> . Certain results support a role of selenium and polymorphisms in selenoenzymes in prostate cancer etiology.	3p21.3	rs1050450	С	[16]
MLH1	mutL homolog 1	<i>MLH1</i> is a mismatch repair gene, which encodes proteins with roles in damage recognition.	3p22	rs1799977 rs9852810	A G	[17] [18]

		This gene encodes a member of the		rs17793693	А	[19]
PPARG	peroxisome proliferator-activated receptor gamma	peroxisome proliferator-activated receptor (PPAR) subfamily of the nuclear receptors. $PPAR-\gamma$, involved in the MAPK signalling pathway, has been implicated in the pathology of a number of disease conditions such as obesity, diabetes mellitus and certain cancers.	3p25	rs4135275	A	[19]
	eukaryotic elongation factor,	The SNP was identified as a risk		rs10934853	А	[20]
EEFSEC	selenocysteine-tRNA-specific	factor for prostate cancer by a genome-wide association study.	3q21.3	rs17552022	А	[19]
ZBTB38	zinc finger and BTB domain containing 38	<i>ZBTB38</i> represses the transcription of methylated templates, and may therefore affect expression of certain genes	3q23	rs6763931	А	[4]
KIAA1211	KIAA1211	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	4q12	rs629242	С	[11]
PDLIM5	PDZ and LIM domain 5	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	4q22	rs12500426	С	[21]
TET2	tet methylcytosine dioxygenase 2	This gene is involved in the transcription of androgen receptor regulated genes <i>KLK2</i> and <i>KLK3</i> superpath.	4q24	rs7679673	А	[22]
FGF10	fibroblast growth factor 10	The protein encoded by the gene <i>FGF10</i> is a member of the fibroblast growth factor family, which possess broad mitogenic and cell survival activities, and is involved in a number of biological activities such as cell growth, tissue repair and tumor growth.	5p13-p12	rs2121875	G	[23]
TERT	telomerase reverse transcriptase	The gene <i>TERT</i> is a	5p15.33	rs2242652	С	[24]

		ribonucleoprotein polymerase which maintains the telomere ends by adding telomere repeat TTAGGG. Deregulation of the expression of this gene in somatic cells may be involved in oncogenesis.				
BHMT	betainehomocysteine S- methyltransferase	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	5q14.1	rs3733890	А	[19]
SEPP1	selenoprotein P, plasma, 1	Certain results support a role of selenium and polymorphisms in selenoenzymes in prostate cancer etiology.	5q31	rs3877899	А	[25]
CCHCR1	coiled-coil alpha-helical rod protein 1	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	6p21.3	rs130067	А	[24]
SOD2	superoxide dismutase 2	The gene <i>SOD2</i> is a member of the iron/manganese superoxide dismutase family. Polymorphisms in this gene have been associated with premature aging, and certain cancers.	6q25	rs4880	С	[26]
JAZFI	JAZF zinc finger 1	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	7p15.2-p15.1	rs10486567	А	[27]
-	-	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	7p15.3	rs12155172	А	[11]
LMTK2	lemur tyrosine kinase 2	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	7q21	rs6465657	С	[28]
PODXL	Podocalyxin-like protein 1	The gene <i>PODXL</i> is involved in the regulation of both adhesion and cell morphology and cancer progression. May lead to increased activities of the MAPK and PI3K pathways in	7q32	rs3735035	С	[21, 29]

		cancer cells.				
LEP	Leptin	Leptin is believed to have a role in energy homeostasis and obesity.	7q33	rs10244329	Т	[30]
				rs1512268	А	[21, 31]
				rs445114	А	[32]
		Most of the 484 annotated genes	0	rs620861	А	[33]
-	-	located on the 8p chromosomal	8p21	rs6470494	А	[34]
		region are highly likely to be		rs6470517	А	[35]
		oncogenes and/or tumour suppressor		rs6983267	А	[36]
		genes.		rs6983561	А	[37]
SLC25A37	solute carrier family 25 (mitochondrial iron transporter), member 37		8p21.2	rs2928679	Т	[31]
				rs10086908	С	[38]
		Genome-wide association studies have successfully identified a number of common polymorphisms that are strongly associated with many health conditions. A gene desert located on the chromosomal region 8q24 is associated with various types of		rs1016343	С	[38]
				rs13254738	С	[39]
	-			rs1378897	С	[34]
				rs16901979	С	[40]
_			8q24	rs4242382	С	[41]
				rs1447295	G	[42]
				rs16902094	G	[43]
				rs1016342	Т	[35]
		cancers.		rs7000448	Т	[44, 45]
				rs871135	С	[34, 35]
PSCA	prostate stem cell antigen		8q24.2	rs2294008	С	[46]
TLR4	toll-like receptor 4	The protein encoded by the gene <i>TLR4</i> is a member of the Toll-like receptor family which plays an important role in the activation of innate immunity.	9q33.1	rs11536889	С	[47]
AKR1C3	Aldo-Keto Reductase Family 1, Member C3	<i>AKR1C3</i> is a protein coding gene and may have a role in controlling	10p15-p14	rs12529	С	[48]

		cell growth and/or differentiation.				
		The SNPs were identified as a risk		rs10740051	А	[49]
NCOA4	nuclear receptor coactivator 4	factor for prostate cancer by a genome-wide association study.	10q11.2	rs17021918	А	[50]
		MSMB is a protein coding gene. One		rs10993994	С	[51]
MSMB	microseminoprotein, beta-	of the most commonly associated	10q11	rs7920517	А	[52]
<i>WISIVID</i>	interosenintoprotein, beta-	diseases with this gene is prostate	10411	rs10896469	А	[53]
		cancer.		rs17178655	А	[54]
PTEN	phosphatase and tensin homolog	<i>PTEN</i> is recognized as a tumour suppressor gene which is identified in a number of cancers at high frequency.	10q23	rs1903858	С	[55]
		The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug		rs6162	А	[56]
CYP17A1	cytochrome P450, family 17, subfamily A, polypeptide 1	metabolism and synthesis of cholesterol, steroids and other lipids. It has a key enzyme in the	10q24.3	Rs6163	А	[57]
		steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and oestrogens.		rs743572	А	[58]
CTBP2	C-terminal binding protein 2	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	10q26.13	rs4962416	С	[59]
CAT	catalase	<i>CAT</i> influences transcription factor binding, and have been identified for role in oxidative stress and diseases such as diabetes mellitus.	11p13	rs1001179	С	[60]
TH	tyrosine hydroxylase	The SNP was identified as a risk factor for prostate cancer by a genome-wide association study.	11p15.5	rs7127900	А	[61]

		<i>FADS2</i> (Fatty Acid Desaturase 2) is a protein coding gene. Among its related pathways is PPAR signalling pathway. Desaturase enzymes		rs1535	А	[62]
FADS2	fatty acid desaturase 2	regulate unsaturation of fatty acids through the introduction of double	11q12.2	rs174448	А	[19]
		bonds between defined carbons of the fatty acyl chain. An important paralog of this gene is <i>FADS3</i> .		rs8066956	А	[63]
FADS3	fatty acid desaturase 3	<i>FADS3</i> (Fatty Acid Desaturase 3) is a protein coding gene. This gene is clustered with family members FADS1 and FADS2.	11q12-q13.1	rs1000778	С	[19]
MYRF	myelin regulatory factor	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	11q12-q13.1	rs174537	G	[64]
		The SNPs were identified as a risk	11-12	rs10896449	G	[65]
-	-	factor for prostate cancer by a genome-wide association study.	11q13	rs983085	G	[66]
				rs10896438	А	[67]
MYEOV	myeloma overexpressed	<i>MYEOV</i> is a putative oncogene.	11q13.2	rs7931342	G	[61]
				rs11228565	А	[67]
		The gene VDR encodes the nuclear		rs11168314	А	[68]
		hormone receptor for vitamin D3.		rs3782905	С	[68]
		This receptor also functions as a receptor for the secondary bile acid		rs6823	С	[68]
	vitamin D recentor	lithocholic acid.	12,12,-14	rs7299460	С	[68]
VDR	vitamin D receptor	The receptor belongs to the family of trans-acting transcriptional	12q12-q14			

		regulatory factors and shows sequence similarity to the steroid and thyroid hormone receptors.				
TUBAIC	tubulin, alpha 1c	The SNPs were identified as a risk	12q13.12	rs10875943	С	[4]
KRT8	keratin 8	factor for prostate cancer by a	12q13.13	rs902774	А	[14]
MDM2	Mouse double minute 2 homolog	genome-wide association study.	12q13-q14	rs2279744	G	[69]
		The protein encoded by this gene is		rs2946834	С	[70]
IGF1	insulin-like growth factor 1 (somatomedin C)	similar to insulin in function and structure and is a member of a family of proteins involved in mediating growth and development.	12q23.2	rs7965399	С	[70]
SEPS1	selenoprotein S	Certain results support a role of selenium and polymorphisms in selenoenzymes in prostate cancer etiology.	15q26.3	rs4965373	А	[71]
VIMP	VCP-interacting membrane protein	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	15q26.3	rs28665122	А	[71]
USP7	ubiquitin specific peptidase 7	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	16p13.3	rs1529916	С	[72]
FTO	fat mass and obesity associated	This gene plays an important role in fat metabolism, a major risk for aggressive prostate cancer.	16q12.2	rs9939609	Т	[73]
		The SNPs were identified as a risk		rs11545302	С	[74]
ELAC2	elaC ribonuclease Z 2	factor for prostate cancer by a	17p11.2	rs174575	С	[19]
		genome-wide association study.		rs2727270	С	[19]
		The SNPs were identified as a risk		rs4054823	С	[75]
-	-	factor for prostate cancer by a genome-wide association study.	17p12	rs7214479	С	[76]
		The SNPs were identified as a risk		rs1016990	А	[77]
HNF1B	HNF1 homeobox B	factor for prostate cancer by a	17q12	rs11649743	А	[77]
		genome-wide association study.		rs4430796	А	[78]

		BRCA1 is an oncogene well		rs3737559	А	[79]
BRCAI	breast cancer 1, early onset	established to have a role in breast cancer (familial).	17q21.31	rs799923	А	[79]
-	-	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	17q24	rs1859962	А	[80]
		This gene plays an important role in		rs6502051	С	[81]
FASN	fatty acid synthase	fat metabolism, a major risk for aggressive prostate cancer.	17q25.3	rs1127678	A	[82]
		aggressive prostate cancer.		rs7652331	С	[15]
				rs713041	С	[71]
		The SNPs were identified as a risk		rs3094509	С	[77]
GPX4	glutathione peroxidase 4	factor for prostate cancer by a	19p13.3	rs3760511	С	[83]
01117	grammone peromause 1	genome-wide association study.	17910.0	rs4794758	С	[84]
				rs7405696	С	[84]
				rs7501939	С	[83]
				rs266849	С	
-	-	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	19q13	rs266870	С	[85]
				rs1506684	С	
SLC26A6	Solute carrier family 26 member 6	<i>SLC26A6</i> is a fusion gene aiding the development of a number of human cancers.		rs887391	А	[86]
PPP1R14A	protein phosphatase 1, regulatory subunit 14A	The SNPs were identified as a risk factor for prostate cancer by a genome-wide association study.	19q13.1	rs8102476	С	[87]
				rs1354774	А	[88]
KLK2	kallikrein-related peptidase 2	These genes play an important role	19q13.33	rs2659122	А	[19]
NLN2	Kankteni-telated peptidase 2	in the production of prostate specific	17415.55	rs16987929	С	[89]
		antigen (PSA).		rs2735839	А	[90]
KLK15	kallikrein-related peptidase 15		19q13.4	rs2659056	А	[91]

KLK3	kallikrain related pontidage 2		10,112	rs17632542	С	[92]
KLK3	kallikrein-related peptidase 3		19q13	rs1058205	С	[93, 94]
				rs17576	G	[95]
		This can a has an important value in	20q12-q13	rs3787268	G	[96]
MMP9	matrix metallopeptidase 9	This gene has an important role in the inflammatory pathway.	20412-413	rs12793759	G	[67]
			20q13.12	rs3918256	G	[97, 98]
				rs2296241	А	[99]
CYP24A1	cytochrome P450, family 24,	The SNPs were identified as a risk	20-12	rs2762939	С	[68]
CIP24A1	subfamily A, polypeptide 1	factor for prostate cancer by a	20q13	rs3787557	С	[68]
		genome-wide association study.		rs4809960	С	[68]
NUDT10/11	Nudix (Nucleoside Diphosphate Linked Moiety X)-Type Motif 10/11		Xp11.22	rs5945619	Т	[100]
NUDT10/11	Nudix (Nucleoside Diphosphate Linked Moiety X)-Type Motif 10/11	The SNPs were identified as a risk factor for prostate cancer by a	Xp11.22	rs5945572	G	[101]
NUDT10/11	Nudix (Nucleoside Diphosphate Linked Moiety X)-Type Motif 10/11	genome-wide association study.	Xp11.22	rs5919432	G	[4]

Table legends:

	SNPs removed after checking for Hardy Weinberg Equilibrium using PLINK
	SNPs removed after checking for Linkage Disequilibrium using PLINK

SUPPLEMENTARY REFERENCES:

- 1. Karunasinghe N, Han DY, Goudie M, Zhu S, Bishop K, Wang A, Duan H, Lange K, Ko S, Medhora R *et al*: **Prostate disease risk factors among a New Zealand cohort**. *J Nutrigenet Nutrigenomics* 2012, **5**(6):339-351.
- 2. Salinas CA, Kwon EM, FitzGerald LM, Feng Z, Nelson PS, Ostrander EA, Peters U, Stanford JL: **Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk**. *American journal of epidemiology* 2010, **172**(5):578-590.
- 3. Sun T, Lee GS, Oh WK, Pomerantz M, Yang M, Xie W, Freedman ML, Kantoff PW: Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population. *Clin Cancer Res* 2010, **16**(21):5244-5251.
- 4. Kote-Jarai Z, Olama AAA, Giles GG, Severi G, Schleutker J, Weischer M, Canzian F, Riboli E, Key T, Gronberg H *et al*: **Seven novel prostate cancer susceptibility loci identified by a multi-stage genome-wide association study**: Nat Genet. ;43(8):785-91. doi:10.1038/ng.882.
- Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Blondal T *et al*: Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer: Nat Genet. 2008 Mar;40(3):281-3. Epub 2008 Feb 10 doi:10.1038/ng.89.
- Koutros S, Berndt SI, Hughes Barry K, Andreotti G, Hoppin JA, Sandler DP, Yeager M, Burdett LA, Yuenger J, Alavanja MCR *et al*: Genetic Susceptibility Loci, Pesticide Exposure and Prostate Cancer Risk. *PLoS One* 2013, 8(4):e58195.
- 7. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA *et al*: Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. *Nat Genet* 2009, **41**(10):1116-1121.
- Beesley J, Jordan SJ, Spurdle AB, Song H, Ramus SJ, Kjaer SK, Hogdall E, DiCioccio RA, McGuire V, Whittemore AS et al: Association Between Single-Nucleotide Polymorphisms in Hormone Metabolism and DNA Repair Genes and Epithelial Ovarian Cancer: Results from Two Australian Studies and an Additional Validation Set. Cancer Epidemiol Biomarkers Prev 2007, 16(12):2557-2565.
- 9. Peters M, Saare M, Kaart T, Haller-Kikkatalo K, Lend AK, Punab M, Metspalu A, Salumets A: Analysis of polymorphisms in the SRD5A2 gene and semen parameters in Estonian men. J Androl 2010, **31**(4):372-378.
- 10. Lindstrom S, Schumacher F, Siddiq A, Travis RC, Campa D, Berndt SI, Diver WR, Severi G, Allen N, Andriole G *et al*: Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3. *PLoS ONE* 2011, 6(2):0017142.
- 11. Cheng I, Plummer SJ, Neslund-Dudas C, Klein EA, Casey G, Rybicki BA, Witte JS: **Prostate cancer susceptibility** variants confer increased risk of disease progression. *Cancer Epidemiol Biomarkers Prev* 2010, **19**(9):2124-2132.
- 12. Nock NL, Tang D, Rundle A, Neslund-Dudas C, Savera AT, Bock CH, Monaghan KG, Koprowski A, Mitrache N, Yang JJ *et al*: Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. *Cancer Epidemiol Biomarkers Prev* 2007, **16**(6):1236-1245.
- Beuten J, Gelfond JAL, Byrne JJ, Balic I, Crandall ALC, Johnson-Pais TL, Thompson IM, Price DK, Leach RJ: CYP1B1 variants are associated with prostate cancer in non-Hispanic and Hispanic Caucasians: Carcinogenesis. 2008 Sep;29(9):1751-7. Epub 2008 Jun 9 doi:10.1093/carcin/bgm300.
- Schumacher FR, Berndt SI, Siddiq A, Jacobs KB, Wang Z, Lindstrom S, Stevens VL, Chen C, Mondul AM, Travis RC et al: Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet 2011, 20(19):3867-3875.
- 15. Cheng I, Plummer SJ, Neslund-Dudas C, Klein EA, Casey G, Rybicki BA, Witte JS: **Prostate Cancer Susceptibility Variants Confer Increased Risk of Disease Progression**. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2010, **19**(9):2124-2132.
- 16. Men T, Zhang X, Yang J, Shen B, Li X, Chen D, Wang J: **The rs1050450 C > T polymorphism of GPX1 is associated with the risk of bladder but not prostate cancer: evidence from a meta-analysis**. *Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine* 2014, **35**(1):269-275.
- 17. Damaraju S, Murray D, Dufour J, Carandang D, Myrehaug S, Fallone G, Field C, Greiner R, Hanson J, Cass CE *et al*: Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. *Clin Cancer Res* 2006, **12**(8):2545-2554.
- 18. Langeberg WJ, Kwon EM, Koopmeiners JS, Ostrander EA, Stanford JL: **Population-based study of the association** of variants in mismatch repair genes with prostate cancer risk and outcomes. *Cancer Epidemiol Biomarkers Prev* 2010, **19**(1):258-264.

- 19. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Ghoussaini M, Luccarini C, Dennis J, Jugurnauth-Little S *et al*: Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. *Nat Genet* 2013, **45**(4):385-391.
- 20. Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Jakobsdottir M *et al*: **Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility**: Nat Genet. 2009 Oct;41(10):1122-6. Epub 2009 Sep 20 doi:10.1038/ng.448.
- 21. Cooper PR, McGuire BB, Helfand BT, Loeb S, Hu Q, Catalona WJ: **Prostate Cancer Risk Alleles and Their** Associations with Other Malignancies. *Urology* 2011, **78**(4):970.e915-970.e920.
- 22. Koutros S, Berndt SI, Hughes Barry K, Andreotti G, Hoppin JA, Sandler DP, Yeager M, Burdett LA, Yuenger J, Alavanja MCR *et al*: **Genetic Susceptibility Loci, Pesticide Exposure and Prostate Cancer Risk**: PLoS One. 2013;8(4):e58195. doi:10.1371/journal.pone.0058195.
- 23. Amankwah EK, Sellers TA, Park JY: Gene variants in the angiogenesis pathway and prostate cancer. *Carcinogenesis* 2012, **33**(7):1259-1269.
- 24. Kote-Jarai Z, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Dadaev T, Jugurnauth-Little S, Ross-Adams H, Al Olama AA, Benlloch S, Halim S *et al*: **Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression**: Hum Mol Genet. 2013 Jun 15;22(12):2520-8. Epub 2013 Mar 27 doi:10.1093/hmg/ddt086.
- 25. Penney KL, Li H, Mucci LA, Loda M, Sesso HD, Stampfer MJ, Ma J: Selenoprotein P Genetic Variants and mRNA Expression, Circulating Selenium and Prostate Cancer Risk and Survival. *Prostate* 2013, **73**(7):700-705.
- 26. Blein S, Berndt S, Joshi AD, Campa D, Ziegler RG, Riboli E, Cox DG: Factors associated with oxidative stress and cancer risk in the Breast and Prostate Cancer Cohort Consortium. *Free radical research* 2014, **48**(3):380-386.
- 27. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A *et al*: **Multiple loci identified in a genome-wide association study of prostate cancer**. *Nat Genet* 2008, **40**(3):310-315.
- 28. Kote-Jarai Z, Easton DF, Stanford JL, Ostrander EA, Schleutker J, Ingles SA, Schaid D, Thibodeau S, Dörk T, Neal D et al: Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium: Cancer Epidemiol Biomarkers Prev. 2008 Aug;17(8):2052-61. doi:10.1158/1055-9965.EPI-08-0317.
- 29. Liu X, Cheng I, Plummer SJ, Suarez B, Casey G, Catalona WJ, Witte JS: Fine Mapping of Prostate Cancer Aggressiveness Loci on Chromosome 7q22-35. *Prostate* 2011, 71(7):682-689.
- 30. Labayen I, Ruiz JR, Moreno LA, Ortega FB, Beghin L, DeHenauw S, Benito PJ, Diaz LE, Ferrari M, Moschonis G *et al*: **The effect of ponderal index at birth on the relationships between common LEP and LEPR polymorphisms and adiposity in adolescents**. *Obesity* 2011, **19**(10):2038-2045.
- 31. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA *et al*: **Identification of seven new prostate cancer susceptibility loci through a genome-wide association study**. *Nat Genet* 2009, **41**(10):1116-1121.
- 32. Knipe DW, Evans DM, Kemp JP, Eeles R, Easton DF, Kote-Jarai Z, Al Olama AA, Benlloch S, Donovan JL, Hamdy FC *et al*: Genetic variation in prostate-specific antigen-detected prostate cancer and the effect of control selection on genetic association studies. *Cancer Epidemiol Biomarkers Prev* 2014, **23**(7):1356-1365.
- Meyer KB, Maia AT, O'Reilly M, Ghoussaini M, Prathalingam R, Porter-Gill P, Ambs S, Prokunina-Olsson L, Carroll J, Ponder BA: A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS genetics 2011, 7(7):e1002165.
- Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Bosquet JG, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S *et al*: Identification of a novel prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 2009, 41(10):1055-1057.
- 35. Pal P, Xi H, Guha S, Sun G, Helfand BT, Meeks JJ, Suarez BK, Catalona WJ, Deka R: **Common variants in 8q24 are** associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. *Prostate* 2009, **69**(14):1548-1556.
- 36. Papanikolopoulou A, Landt O, Ntoumas K, Bolomitis S, Tyritzis SI, Constantinides C, Drakoulis N: The multicancer marker, rs6983267, located at region 3 of chromosome 8q24, is associated with prostate cancer in Greek patients but does not contribute to the aggressiveness of the disease. *Clinical chemistry and laboratory medicine : CCLM / FESCC* 2012, **50**(2):379-385.
- 37. Suzuki M, Liu M, Kurosaki T, Suzuki M, Arai T, Sawabe M, Kasuya Y, Kato M, Fujimura T, Fukuhara H *et al*: Association of rs6983561 polymorphism at 8q24 with prostate cancer mortality in a Japanese population. *Clinical genitourinary cancer* 2011, 9(1):46-52.
- 38. Hui J, Xu Y, Yang K, Liu M, Wei D, Wei D, Zhang Y, Shi XH, Yang F, Wang N et al: Study of genetic variants of 8q21 and 8q24 associated with prostate cancer in Jing-Jin residents in northern China. Clinical laboratory 2014, 60(4):645-652.

- Fletcher O, Johnson N, Gibson L, Coupland B, Fraser A, Leonard A, dos Santos Silva I, Ashworth A, Houlston R, Peto J: Association of genetic variants at 8q24 with breast cancer risk. *Cancer Epidemiol Biomarkers Prev* 2008, 17(3):702-705.
- 40. Tan YC, Zeigler-Johnson C, Mittal RD, Mandhani A, Mital B, Rebbeck TR, Rennert H: **Common 8q24 sequence** variations are associated with Asian Indian advanced prostate cancer risk. *Cancer Epidemiol Biomarkers Prev* 2008, **17**(9):2431-2435.
- 41. Chen LS, Fann JC, Chiu SY, Yen AM, Wahlfors T, Tammela TL, Chen HH, Auvinen A, Schleutker J: Assessing interactions of two loci (rs4242382 and rs10486567) in familial prostate cancer: statistical evaluation of epistasis. *PLoS One* 2014, 9(2):e89508.
- 42. Severi G, Hayes VM, Padilla EJ, English DR, Southey MC, Sutherland RL, Hopper JL, Giles GG: **The common** variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian populationbased case-control study. *Cancer Epidemiol Biomarkers Prev* 2007, 16(3):610-612.
- 43. Barry KH, Moore LE, Sampson J, Yan L, Meyer A, Oler AJ, Chung CC, Wang Z, Yeager M, Amundadottir L *et al*: DNA methylation levels at chromosome 8q24 in peripheral blood are associated with 8q24 cancer susceptibility loci. *Cancer prevention research (Philadelphia, Pa)* 2014, 7(12):1282-1292.
- 44. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ *et al*: **Multiple regions within 8q24 independently affect risk for prostate cancer**. *Nat Genet* 2007, **39**(5):638-644.
- 45. Beebe-Dimmer JL, Levin AM, Ray AM, Zuhlke KA, Machiela MJ, Halstead-Nussloch BA, Johnson GR, Cooney KA, Douglas JA: Chromosome 8q24 markers: risk of early-onset and familial prostate cancer. Int J Cancer 2008, 122(12):2876-2879.
- 46. Zheng K, Chen Z, Tian YE, Hao G: Association between PSCA mRNA expression levels and rs2294008 polymorphism in transitional cell cancer of the bladder. *Oncology Letters* 2015, **9**(2):557-562.
- 47. Mansur A, Gruben Lv, Popov AF, Steinau M, Bergmann I, Ross D, Ghadimi M, Beissbarth T, Bauer M, Hinz J: The regulatory toll-like receptor 4 genetic polymorphism rs11536889 is associated with renal, coagulation and hepatic organ failure in sepsis patients. *Journal of Translational Medicine* 2014, 12:177-177.
- 48. Yu C-C, Huang S-P, Lee Y-C, Huang C-Y, Liu C-C, Hour T-C, Huang C-N, You B-J, Chang T-Y, Huang C-H *et al*: Molecular Markers in Sex Hormone Pathway Genes Associated with the Efficacy of Androgen-Deprivation Therapy for Prostate Cancer. *PLoS One* 2013, 8(1):e54627.
- 49. Wang Y, Ray AM, Johnson EK, Zuhlke KA, Cooney KA, Lange EM: Evidence for an association between prostate cancer and chromosome 8q24 and 10q11 genetic variants in African American men: the Flint Men's Health Study. *Prostate* 2011, 71(3):225-231.
- 50. Hui J, Wang JY, Shi XH, Zhang YG, Liu M, Wang X, Wang NN, Chen X, Liang SY, Wei D *et al*: **[Association of prostate cancer with PDLIM5, SLC22A3 and NKX3-1 in Chinese men]**. *Zhonghua nan ke xue = National journal of andrology* 2012, **18**(5):404-411.
- 51. Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A, Bancroft E, Jhavar S, Leongamornlert D, Tymrakiewicz M *et al*: **The rs10993994 Risk Allele for Prostate Cancer Results in Clinically Relevant Changes in Microseminoprotein-Beta Expression in Tissue and Urine**. *PLoS One* 2010, **5**(10):e13363.
- 52. Huang SP, Huang LC, Ting WC, Chen LM, Chang TY, Lu TL, Lan YH, Liu CC, Yang WH, Lee HZ *et al*: **Prognostic** significance of prostate cancer susceptibility variants on prostate-specific antigen recurrence after radical prostatectomy. *Cancer Epidemiol Biomarkers Prev* 2009, **18**(11):3068-3074.
- 53. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: **Prospective identification of tumorigenic prostate cancer** stem cells. *Cancer research* 2005, **65**(23):10946-10951.
- 54. Sullivan J, Kopp R, Stratton K, Manschreck C, Corines M, Rau-Murthy R, Hayes J, Lincon A, Ashraf A, Thomas T *et al*: An analysis of the association between prostate cancer risk loci, PSA levels, disease aggressiveness and disease-specific mortality. *Br J Cancer* 2015, **113**(1):166-172.
- 55. Xie CC, Lu L, Sun J, Zheng SL, Isaacs WB, Gronberg H, Xu J: Germ-line sequence variants of PTEN do not have an important role in hereditary and non-hereditary prostate cancer susceptibility. *Journal of Human Genetics* 2011, **56**(7):496-502.
- 56. Levesque E, Huang SP, Audet-Walsh E, Lacombe L, Bao BY, Fradet Y, Laverdiere I, Rouleau M, Huang CY, Yu CC *et al*: **Molecular markers in key steroidogenic pathways, circulating steroid levels, and prostate cancer progression**. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2013, **19**(3):699-709.
- 57. Yamada T, Nakayama M, Shimizu T, Nonen S, Nakai Y, Nishimura K, Fujio Y, Okuyama A, Azuma J, Nonomura N: Genetic polymorphisms of CYP17A1 in steroidogenesis pathway are associated with risk of progression to castration-resistant prostate cancer in Japanese men receiving androgen deprivation therapy. *Int J Clin Oncol* 2013, **18**(4):711-717.

- 58. Wang Y, Zhang Y, Meng H, Hou X, Li Z, Liu Q, Meng L: Quantitative Assessment of the Association Between CYP17 rs743572 Polymorphism and Prostate Cancer Risk. *Cell biochemistry and biophysics* 2015, **71**(2):983-991.
- 59. Lange EM, Salinas CA, Zuhlke KA, Ray AM, Wang Y, Lu Y, Ho LA, Luo J, Cooney KA: **Early onset prostate cancer** has a significant genetic component. *Prostate* 2012, **72**(2):147-156.
- Geybels MS, van den Brandt PA, van Schooten FJ, Verhage BA: Oxidative stress-related genetic variants, proand antioxidant intake and status, and advanced prostate cancer risk. *Cancer Epidemiol Biomarkers Prev* 2015, 24(1):178-186.
- 61. Zhang YR, Xu Y, Yang K, Liu M, Wei D, Zhang YG, Shi XH, Wang JY, Yang F, Wang X *et al*: Association of six susceptibility Loci with prostate cancer in northern chinese men. *Asian Pacific journal of cancer prevention : APJCP* 2012, **13**(12):6273-6276.
- 62. Zhang B, Jia W-H, Matsuda K, Kweon S-S, Matsuo K, Xiang Y-B, Shin A, Jee SH, Kim D-H, Cai Q *et al*: Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. *Nat Genet* 2014, 46(6):533-542.
- 63. Chavarro JE, Kenfield SA, Stampfer MJ, Loda M, Campos H, Sesso HD, Ma J: Blood Levels of Saturated and Monounsaturated Fatty Acids as Markers of De Novo Lipogenesis and Risk of Prostate Cancer. American journal of epidemiology 2013, 178(8):1246-1255.
- 64. Azrad M, Zhang K, Vollmer RT, Madden J, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner D, Hardy RW *et al*: **Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism**. *PLoS One* 2012, **7**(12):e53104.
- 65. Zheng SL, Stevens VL, Wiklund F, Isaacs SD, Sun J, Smith S, Pruett K, Wiley KE, Kim ST, Zhu Y et al: Two independent prostate cancer risk-associated Loci at 11q13. Cancer Epidemiol Biomarkers Prev 2009, 18(6):1815-1820.
- 66. Sun J, Purcell L, Gao Z, Isaacs SD, Wiley KE, Hsu F-C, Liu W, Duggan D, Carpten JD, Grönberg H *et al*: Association of variants at two 17q loci with prostate cancer risk in European and African Americans. *Prostate* 2008, 68(7):691-697.
- Chung CC, Boland J, Yeager M, Jacobs KB, Zhang X, Deng Z, Matthews C, Berndt SI, Chanock SJ: Comprehensive resequence analysis of a 123-kb region of chromosome 11q13 associated with prostate cancer. *Prostate* 2012, 72(5):476-486.
- 68. Holt SK, Kwon EM, Koopmeiners JS, Lin DW, Feng Z, Ostrander EA, Peters U, Stanford JL: Vitamin D pathway gene variants and prostate cancer prognosis. *Prostate* 2010, **70**(13):1448-1460.
- 69. Cintra HS, Pinezi JCD, Machado GDP, de Carvalho GM, Carvalho ATS, dos Santos TED, Marciano RD, Soares RdBA: Investigation of Genetic Polymorphisms Related to the Outcome of Radiotherapy for Prostate Cancer Patients. Disease markers 2013, **35**(6):701-710.
- 70. Chang CF, Pao JB, Yu CC, Huang CY, Huang SP, Yang YP, Huang CN, Chang TY, You BJ, Lee HZ *et al*: **Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy**. *Ann Surg Oncol* 2013, **20**(7):2446-2452.
- 71. Karunasinghe N, Han DY, Zhu S, Yu J, Lange K, Duan H, Medhora R, Singh N, Kan J, Alzaher W *et al*: Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: relationship to markers of oxidative stress in men from Auckland, New Zealand. *Genes & Nutrition* 2012, **7**(2):179-190.
- 72. Sun T, Lee GS, Oh WK, Pomerantz M, Yang M, Xie W, Freedman ML, Kantoff PW: **Single-nucleotide polymorphisms in p53 pathway and aggressiveness of prostate cancer in a Caucasian population**. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2010, **16**(21):5244-5251.
- 73. Lewis SJ, Murad A, Chen L, Davey Smith G, Donovan J, Palmer T, Hamdy F, Neal D, Lane JA, Davis M et al: Associations between an obesity related genetic variant (FTO rs9939609) and prostate cancer risk. PLoS One 2010, 5(10):e13485.
- 74. Beuten J, Gelfond JA, Franke JL, Shook S, Johnson-Pais TL, Thompson IM, Leach RJ: Single and multivariate associations of MSR1, ELAC2, and RNASEL with prostate cancer in an ethnic diverse cohort of men. *Cancer Epidemiol Biomarkers Prev* 2010, **19**(2):588-599.
- 75. Pomerantz MM, Werner L, Xie W, Regan MM, Lee GS, Sun T, Evan C, Petrozziello G, Nakabayashi M, Oh WK *et al*: Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality. *Cancer prevention research (Philadelphia, Pa)* 2011, **4**(5):719-728.
- 76. Liu H, Wang B, Han C: Meta-analysis of genome-wide and replication association studies on prostate cancer. *Prostate* 2011, **71**(2):209-224.
- 77. Berndt SI, Sampson J, Yeager M, Jacobs KB, Wang Z, Hutchinson A, Chung C, Orr N, Wacholder S, Chatterjee N *et al*: Large-scale fine mapping of the HNF1B locus and prostate cancer risk. *Hum Mol Genet* 2011, **20**(16):3322-3329.

- 78. Xiang YZ, Jiang SB, Zhao J, Xiong H, Cui ZL, Li GB, Jin XB: **Racial disparities in the association between diabetes** mellitus-associated polymorphic locus rs4430796 of the HNF1beta gene and prostate cancer: a systematic review and meta-analysis. *Genetics and molecular research : GMR* 2014, **13**(3):6582-6592.
- 79. Douglas JA, Levin AM, Zuhlke KA, Ray AM, Johnson GR, Lange EM, Wood DP, Cooney KA: **Common Variation in the BRCA1 Gene and Prostate Cancer Risk**. *Cancer Epidemiol Biomarkers Prev* 2007, **16**(7):1510-1516.
- 80. Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M: Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome research 2012, 22(8):1437-1446.
- 81. Chavarro JE, Kenfield SA, Stampfer MJ, Loda M, Campos H, Sesso HD, Ma J: Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer. American journal of epidemiology 2013, 178(8):1246-1255.
- Nguyen PL, Ma J, Chavarro JE, Freedman ML, Lis R, Fedele G, Fiore C, Qiu W, Fiorentino M, Finn S *et al*: Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival. Journal of Clinical Oncology 2010, 28(25):3958-3964.
- 83. Nikolic ZZ, Brankovic AS, Savic-Pavicevic DL, Prekovic SM, Vukotic VD, Cerovic SJ, Filipovic NN, Tomovic SM, Romac SP, Brajuskovic GN: Assessment of association between common variants at 17q12 and prostate cancer risk-evidence from Serbian population and meta-analysis. *Clinical and translational science* 2014, **7**(4):307-313.
- Berndt SI, Sampson J, Yeager M, Jacobs KB, Wang Z, Hutchinson A, Chung C, Orr N, Wacholder S, Chatterjee N *et al*: Large-scale fine mapping of the HNF1B locus and prostate cancer risk. *Human molecular genetics* 2011, 20(16):3322-3329.
- Ahn J, Berndt SI, Wacholder S, Kraft P, Kibel AS, Yeager M, Albanes D, Giovannucci E, Stampfer MJ, Virtamo J *et al*: Variation in KLK Genes, Prostate Specific Antigen, and Risk of Prostate Cancer. Nat Genet 2008, 40(9):10.1038/ng0908-1032.
- 86. Hsu FC, Sun J, Wiklund F, Isaacs SD, Wiley KE, Purcell LD, Gao Z, Stattin P, Zhu Y, Kim ST *et al*: A novel prostate cancer susceptibility locus at 19q13. *Cancer research* 2009, 69(7):2720-2723.
- 87. Agalliu I, Wang Z, Wang T, Dunn A, Parikh H, Myers T, Burk RD, Amundadottir L: Characterization of SNPs associated with prostate cancer in men of Ashkenazic descent from the set of GWAS identified SNPs: impact of cancer family history and cumulative SNP risk prediction. *PLoS One* 2013, **8**(4):e60083.
- 88. Jin G, Zheng SL, Lilja H, Kim ST, Tao S, Gao Z, Young T, Wiklund F, Feng J, Isaacs WB *et al*: **Genome-wide** association study identifies loci at ATF7IP and KLK2 associated with percentage of circulating free PSA. *Neoplasia (New York, NY)* 2013, **15**(1):95-101.
- 89. Jin G, Zheng SL, Lilja H, Kim ST, Tao S, Gao Z, Young T, Wiklund F, Feng J, Isaacs WB et al: Genome-wide Association Study Identifies Loci at ATF7IP and KLK2 Associated with Percentage of Circulating Free PSA: Neoplasia. 2013 Jan;15(1):95-101.
- 90. He Y, Gu J, Strom S, Logothetis CJ, Kim J, Wu X: **The prostate cancer susceptibility variant rs2735839 near KLK3 gene is associated with aggressive prostate cancer and can stratify gleason score 7 patients**. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2014, **20**(19):5133-5139.
- 91. Batra J, Lose F, O'Mara T, Marquart L, Stephens C, Alexander K, Srinivasan S, Eeles RA, Easton DF, Al Olama AA *et al*: Association between Prostinogen (KLK15) genetic variants and prostate cancer risk and aggressiveness in Australia and a meta-analysis of GWAS data. *PLoS One* 2011, 6(11):e26527.
- 92. Parikh H, Wang Z, Pettigrew KA, Jia J, Daugherty S, Yeager M, Jacobs KB, Hutchinson A, Burdett L, Cullen M *et al*:
 Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. *Human genetics* 2011, 129(6):675-685.
- 93. Ahn J, Berndt SI, Wacholder S, Kraft P, Kibel AS, Yeager M, Albanes D, Giovannucci E, Stampfer MJ, Virtamo J et al: Variation in KLK Genes, Prostate Specific Antigen, and Risk of Prostate Cancer. Nature genetics 2008, 40(9):10.1038/ng0908-1032.
- 94. Stegeman S, Amankwah E, Klein K, O'Mara TA, Kim D, Lin H-Y, Permuth-Wey J, Sellers TA, Srinivasan S, Eeles R *et al*: A large scale analysis of genetic variants within putative miRNA binding sites in prostate cancer. *Cancer discovery* 2015, **5**(4):368-379.
- 95. Sun J-z, Yang X-x, Hu N-y, Li X, Li F-x, Li M: Genetic Variants in MMP9 and TCF2 Contribute to Susceptibility to Lung Cancer. *Chinese Journal of Cancer Research* 2011, **23**(3):183-187.
- 96. Ting W-C, Chen L-M, Pao J-B, Yang Y-P, You B-J, Chang T-Y, Lan Y-H, Lee H-Z, Bao B-Y: Genetic Polymorphisms of Matrix Metalloproteinases and Clinical Outcomes in Colorectal Cancer Patients. International Journal of Medical Sciences 2013, 10(8):1022-1027.
- 97. Aalinkeel R, Nair BB, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA: **Overexpression of MMP-9** contributes to invasiveness of prostate cancer cell line LNCaP. *Immunol Invest* 2011, **40**(5):447-464.

- 98. Jacobs EJ, Hsing AW, Bain EB, Stevens VL, Wang Y, Chen J, Chanock SJ, Zheng SL, Xu J, Thun MJ et al: Polymorphisms in angiogenesis-related genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 2008, 17(4):972-977.
- 99. Penna-Martinez M, Ramos-Lopez E, Stern J, Kahles H, Hinsch N, Hansmann M-L, Selkinski I, Grünwald F, Vorländer C, Bechstein WO *et al*: Impaired Vitamin D Activation and Association with CYP24A1 Haplotypes in Differentiated Thyroid Carcinoma. *Thyroid* 2012, 22(7):709-716.
- 100. FitzGerald LM, Kwon EM, Koopmeiners JS, Salinas CA, Stanford JL, Ostrander EA: Analysis of Recently Identified Prostate Cancer Susceptibility Loci in a Population-based Study: Associations with Family History and Clinical Features. *Clinical Cancer Research* 2009, **15**(9):3231-3237.
- 101. Li W, Gu M: **NUDT11 rs5945572 polymorphism and prostate cancer risk: a meta-analysis**. *International Journal of Clinical and Experimental Medicine* 2015, **8**(3):3474-3481.