Design, synthesis and biological evaluation of pyrazoline nucleus based homoleptic Ru(III) compounds

Jugal V. Mehta, Sanjay B. Gajera and Mohan N. Patel*

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar–388 120, Gujarat, India. Corresponding author. Tel.: +91 2692 226856 E-mail: <u>jeenen@gmail.com</u>

Supplementary material 1: ¹H NMR spectra of ligands (5a–5g)

1. [5-(4-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5a)

2. [5-(3-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5b)

3. [5-(4-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5c)

4. [5-(3-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5d)

5. [5-(4-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5e)

6. [5-(3-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5f)

7. [5-(4-Methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5g)

Supplementary material 2: ¹³C NMR spectra of ligands (5a–5g)

1. [5-(4-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5a)

2. [5-(3-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5b)

3. [5-(4-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5c)

4. [5-(3-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5d)

5. [5-(4-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5e)

6. [5-(3-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5f)

7. [5-(4-Methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5g)

Supplementary material 3: LC-mass spectrum of complex 6a

Supplementary material 4: Mass fragmentation pattern of complex 6a

m/z: 802.08

m/z: 105.03

0

m/z: 245.05

Supplementary material 5: Thermogravimetric analysis (TGA) of complex 6a

Supplementary material 6: An electron paramagnetic resonance (EPR) spectrum of complex 6a

Supplementary material 7: Binding constant (K_b), percentage hypochromicity (%H), bathochromicity ($\Delta\lambda$), IC₅₀ (antimalarial) and LC₅₀ (*in vitro* cytotoxicity) values of free ligands and synthesized complexes with error uncertainty in the value ± 5 %

Compounds	$K_{\rm b}$ (L mol ⁻¹)	%H	$\Delta\lambda$ nm	IC ₅₀ (mg/L)	LC ₅₀ (mg/L)
5a	$0.876\pm0.02 \times 10^5$	21.31±0.55	2.9±0.08	1.12±0.03	71.614±2.15
5b	$0.825 \pm 0.02 \times 10^5$	20.00±0.54	2.8±0.09	1.17 ± 0.04	75.857±2.46
5c	$0.652{\pm}0.01 \times 10^5$	18.53±0.61	2.9±0.10	1.22 ± 0.04	80.909±2.70
5d	$0.552{\pm}0.01\ \times 10^{5}$	17.94±0.62	3.2±0.11	1.25 ± 0.03	100.925±3.10
5e	$0.505{\pm}0.01\ \times 10^{5}$	18.71±0.60	3.7±0.10	1.24 ± 0.03	99.311±3.03
5f	$0.476 \pm 0.01 \times 10^5$	17.96±0.55	2.7±0.10	1.30±0.05	100.46±2.82
5g	$0.369 \pm 0.01 \times 10^5$	18.70±0.56	2.9±0.10	1.50 ± 0.06	119.124±3.56
ба	$5.02{\pm}0.13\times10^5$	23.36±0.82	2.8±0.10	0.46±0.01	5.568±0.20
6b	$4.76{\pm}0.12\times10^5$	22.02±0.59	2.8±0.09	0.50±0.01	5.680±0.19
6с	$3.84{\pm}0.12\times10^5$	21.71±0.56	3.1±0.10	0.65±0.01	7.589±0.23
6d	$3.19{\pm}0.11\times10^5$	20.80±0.62	3.6±0.12	0.76±0.01	7.908±0.24
6e	$3.29{\pm}0.11\times10^5$	19.58±0.66	3.4±0.12	0.84 ± 0.01	7.998±0.26
6f	$3.17{\pm}0.10\times10^5$	19.32±0.58	2.9±0.10	0.88±0.01	7.852±0.25
6g	$2.80{\pm}0.09\times10^5$	20.42±0.72	3.0±0.11	0.94±0.01	8.009±0.29

Compounds	Gram(+ve)		Gram(-ve)			
I I I I I I I I I I I I I I I I I I I	S. Aureus	B. subtilis	S. marcescens	P. aeruginosa	E. coli	
5a	266±2	253±4	267±2	263±2	270±2	
5b	273±3	258±4	274±3	271±2	277±2	
5c	279±2	263±3	282±3	278±3	285±2	
5d	288±3	271±3	287±3	285±2	296±3	
5e	292±3	279±3	296±3	293±2	302±2	
5f	299±3	287±2	304±3	301±2	308±2	
5g	307±3	296±3	310±3	309±3	314±3	
ба	86±1	83±1	84±1	86±1	70±1	
6b	90±1	86±1	88±1	90±1	76±1	
бс	95±1	91±2	83±1	95±1	81±1	
6d	99±2	97±1	86±1	99±1	86±1	
бе	105±2	99±1	103±1	105±1	91±1	
6f	104±1	103±1	108±1	109±1	97±1	
6g	112±2	114±2	115±1	114±2	111±2	

 $\label{eq:supplementary material 8: Bacteriostatic concentration of ligands and synthesized complexes by broth dilution method in terms of MIC in \mumol L^{-1} with error uncertainty in the value <math display="inline">\pm 5~\%$

Supplementary material 9: Effect on relative viscosity of HS DNA under the influence of increasing amounts of pyrazolines ligands at 27 (±0.1) °C in phosphate buffer at pH=7.2 with error uncertainty in the value ±5 %

Supplementary material 10:Molecular docking of the complexes 6b–6g and pyrazolines ligands (5a-5g) (ball and stick) with the DNA duplex (VDW spheres) of sequence d(ACCGACGTCGGT)₂. The complex is docked in to the DNA showing intercalation between the DNA base pairs.

1. Ru^{III} Complex (**6b**)

2. Ru^{III} Complex (6c)

3. Ru^{III} Complex (**6d**)

4. Ru^{III} Complex (**6e**)

5. Ru^{III} Complex (**6f**)

6. Ru^{III} Complex (6g)

7. [5-(4-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5a)

8. [5-(3-Fluorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5b)

9. [5-(4-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5c)

10. [5-(3-Chlorophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5d)

11. [5-(4-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5e)

12. [5-(3-Bromophenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5f)

13. [5-(4-Methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazol-1-yl]-phenyl methanone (5g)

Lane	C 1	Form	Form	Form	%
No.	Compound	Ι	II	III	Cleavage
1	5a	48±1	30±1	22±1	45.45±.1.0
2	5b	48±1	32±1	20±1	45.45±0.9
3	5c	49±1	32±1	19±1	44.31±0.8
4	5d	50±1	34±1	16±1	43.18±0.8
5	5e	51±1	32±1	17±1	42.04±0.8
6	5f	51±1	34±1	15±1	42.04±0.7
7	5g	52±1	33±1	15±1	40.90±0.7
8	DNA Control	88±2	12±1	_	_
9	RuCl ₃ ·3H ₂ O	81±2	19±1	_	7.95±0.21
10	ба	21±1	53±1	26±1	76.13±2.2
11	6b	23±1	43±1	34±1	73.86±2.0
12	бс	25±1	40±1	35±1	71.59±1.8
13	6d	26±1	42±1	32±1	70.45±1.7
14	бе	27±1	44±1	29±1	69.31±1.6
15	6f	28±1	44±1	28±1	68.18±1.6
16	6g	29±1	40±1	31±1	67.04±1.5

Supplementary material 11: Complex mediated DNA cleavage data by agarose gel electrophoresis with error uncertainty in the value ± 5 %