Supplementary data

Design, synthesis and antiproliferative activity studies of

1,2,3-triazole-chalcones

Dong-Jun Fu ${ }^{\text {1a }}$, Sai-Yang Zhang ${ }^{\text {la }}$, Ying-Chao Liu ${ }^{\text {a }}$, Xiao-Xin Yue ${ }^{\text {b }}$, Jun-Ju Liu ${ }^{\text {a }}$, Jian Song ${ }^{\text {a }}$, Ruo-Han Zhao ${ }^{\text {a }}$, Feng Lia ${ }^{\text {a }}$, Hui-Hui Sun ${ }^{\text {a }}$, Yan-Bing Zhang ${ }^{*}$, and Hong-Min $\mathrm{Liu}^{*}{ }^{\text {a }}$
${ }^{\text {a }}$ Collaborative Innovation Center of New Drug Research and Safety Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
${ }^{\text {b }}$ Henan Medical College, Zhengzhou 450001, $P R$, China
${ }^{1}$ These authors contributed equally

1. General Experimental

The reaction process was monitored by TLC with silica gel plates (thickness $250 \mu \mathrm{~m}$, Indicator F -254). The target analogues were purified by column chromatography with silica gel (300 meshes). Melting points were determined on an electro thermal melting point apparatus and were reported uncorrected. The novel structures of target analogues were characterized by NMR (400 and 100 MHz) in Acetone $-\mathrm{d}_{6}$, DMSO- d_{6} or CDCl_{3} with TMS as an internal standard and HRMS. The purity of all biologically evaluated compounds was determined to be $>95 \%$ by reverse phase high performance liquid chromatography (HPLC) analysis. HPLC measurement was performed with a Phenomenex column $\left(\mathrm{C}_{18}, 5.0 \mu \mathrm{~m}, 4.60 \mathrm{~mm} \times 250\right.$ mm) on Dionex UltiMate 3000 UHPLC instrument from ThermoFisher. The signal was monitored at 254 nm with a UV dector. A flow rate of $0.5 \mathrm{ml} / \mathrm{min}$ was used with mobile phase of MeOH in $\mathrm{H}_{2} \mathrm{O}(60: 40, \mathrm{v} / \mathrm{v})$.

2. Experimental Procedures and Analytical Data

General Procedure for the Synthesis of Compounds 5a-e

To a magnetically stirred solution of aryl bromides (3 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$, sodium azide (9 mmol) and tetrabutylammonium bromide (1 mmol) were added carefully and the reaction mixture was refluxed for 10 h . Upon completion, the reaction mixture was concentrated under vacuum, the residue was dissolved in EtOAc (30 mL) and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford compounds 5a-e, which were used in the next reaction without further purification (yield:
87.4\%~92.6\%).

General Procedure for the Synthesis of Compounds 6a-c

p-aminoacetophenone (1 mmol), substituted aromatic aldehyde (1 $\mathrm{mmol})$ and $\mathrm{NaOH}(1 \mathrm{mmol})$ were dissolved in ethanol (10 ml). The mixture was allowed to stir for 3 h at room temperature. Upon completion, the precipitated product was filtered off and washed with ethanol to afford the crude product (yield: $80.4 \% \sim 86.9 \%$).

General Procedure for the Synthesis of Compounds 9a-g

propargyl bromide (1 mmol), p-acetylphenol (1 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ were dissolved in acetone (10 ml) and the reaction mixture was refluxed for 8 h . Upon completion, the precipitated product was filtered off and washed with ethylacetate to afford the crude product 7. compound $7(1.05 \mathrm{mmol}), 5 \mathrm{a}(1 \mathrm{mmol}), \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$ and sodium ascorbate $(0.1 \mathrm{mmol})$ were dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml} / 5$ ml) to stir for 7 h at room temperature. Upon completion, the precipitated product was filtered off and washed with ethanol to afford the crude product 8 . Compound 8 (1 mmol), substituted aromatic aldehyde (1 mmol) and $\mathrm{NaOH}(1 \mathrm{mmol})$ were dissolved in ethanol (10 ml) to stir at room temperature. The reaction was monitored by TLC till the reaction was finished. Upon completion, the reaction mixture was concentrated under vacuum, the residue was dissolved in EtOAc and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford $9 \mathrm{a}-\mathrm{g}$ which were purified with column chromatography (total yield: $62.2 \% \sim 71.3 \%$).

General Procedure for the Synthesis of Compounds 12a-n

propargyl bromide (1 mmol), p-aminoacetophenone (1 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1 $\mathrm{mmol})$ were dissolved in acetone (10 ml) and the reaction mixture was refluxed for 8 h . Upon completion, the precipitated product was filtered off and washed with ethylacetate to afford the crude product 10. compound $\mathbf{1 0}$ (1.05 mmol), azide derivatives (1 mmol), $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$ and sodium ascorbate (0.1 mmol) were dissolved in THF/ $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml} / 5 \mathrm{ml})$ to stir for 7 h at room temperature. Upon completion, the precipitated product was filtered off and washed with ethanol to afford the crude product 11a-e. Compound 11a-e (1 mmol), substituted aromatic aldehyde (1 mmol) and $\mathrm{NaOH}(1$ $\mathrm{mmol})$ were dissolved in ethanol $(10 \mathrm{ml})$ to stir at room temperature. The reaction was monitored by TLC till the reaction was finished.

Upon completion, the reaction mixture was concentrated under vacuum, the residue was dissolved in EtOAc and washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford compounds 12a-n which were purified with column chromatography ($68.9 \% \sim 77.5 \%$).

${ }^{1} H,{ }^{13} \mathrm{C}$ NMR and HRMS Spectra for all new compounds

(E)-1-(4-((1-benzyl-1 H -1,2,3-triazol-4-yl)methoxy)phenyl)-3-(2-fluorophenyl)prop-2-en-1-one (9a)

White solid, yield: 85%, m.p: $249.6 \sim 253.2^{\circ} \mathrm{C}$. purity: 98.23%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=7.0,2.2$ Hz, 4H), 7.28 (dd, $J=7.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.10$ (m, 2H), 7.06 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 188.71, 162.04, 143.88, 136.90, 134.34, 131.71, 131.62, 131.42, 130.92, 129.85, 129.21, 128.92, 128.17, 124.50, 123.10, 122.77, 116.41, 116.19, 114.67, 62.16, 54.35. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+: 414.1618$, found: 414.1616.

White solid, yield: 86%, m.p: $182.3 \sim 184.4^{\circ} \mathrm{C}$. purity: 98.04%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (dd, $J=7.9,1.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.28$ (dd, $J=7.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.42,162.07,143.84,142.63,136.26,134.33,133.54$, 131.41, 130.85, 129.53, 129.23, 129.22, 128.93, 128.17, 122.77, 122.23, 114.69, 62.16, 54.35 .

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (9c)

White solid, yield: 75%, m.p: $156.6 \sim 158.2^{\circ} \mathrm{C}$. purity: 99.13%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), 7.40 (d, $J=16.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.25$ (m, $2 \mathrm{H}), 7.07$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (s, 2H), 5.55 (s, 2H), 5.27 (s, 2H), 3.92 (dd, $J=9.4,1.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.71$, 161.93, 153.49, 144.32, 143.87, 140.33, 134.33, 131.62, 130.81, $130.53,129.21,128.92,128.17,122.79,121.16,114.65,105.60$, 62.13, 61.02, 56.24, 54.35. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]+: 486.2029$, found: 486.2028.

White solid, yield: 84%, m.p: $145.6 \sim 147.2^{\circ} \mathrm{C}$. purity: $97.17 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.01 (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.68$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (s, 1H), 7.47 (dd, $J=8.9$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42-7.35$ (m, 3H), 7.29 (ddd, $J=6.7,4.9,2.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.28,162.17,143.81,138.67,136.30,135.99$, $134.32,132.02,131.17,130.97,130.13,129.22$, 128.93, 128.50, 128.17, 127.54, 124.87, 122.77, 114.73, 62.17, 54.35. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+$: 464.0933 , found: 464.0938 .

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(2-methoxyphenyl)prop-2-en-1-one (9e)

White solid, yield : 75\%, m.p : 130.6~132.4 ${ }^{\circ} \mathrm{C}$. purity: $98.65 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.28$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.36,161.76,161.27$, 158.79, 139.75, 134.36, 131.93, 131.57, 130.82, 129.27, 129.21, 128.91, 128.17, 127.50, 124.10, 122.68, 120.74, 114.56, 111.23, 62.16, 55.56, 54.34. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$: 426.1818, found: 426.1819 .

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(4-nitrophenyl)prop-2-en-1-one (9f)

White solid, yield: 89%, m.p: $203.6 \sim 205.4^{\circ} \mathrm{C}$. purity: $98.93 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.09-8.00$ (m, 2H), 7.79 (dd, $J=12.0,9.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), 7.38 (dt, $J=4.5,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.79,162.40,148.48,143.72,141.24,140.85,134.30$, 130.99, 130.95, 129.22, 128.94, 128.86, 128.18, 125.58, 124.22, 122.79, 114.84, 62.18, 54.36. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]+: 441.1563$, found: 441.1567.

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3-fluoro-4-(4-methylpiperazin-1-yl)phenyl)prop-2-en-1-one (9g)

White solid, yield: 71%, m.p: $163.4 \sim 165.9^{\circ} \mathrm{C}$. purity: $96.38 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (d, $J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.05 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (s, 2H), 5.27 (s, 2H), $3.31-3.16(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.43,161.87,156.37,153.92$, 143.90, 142.94, 141.92, 134.34, 131.70, 130.73, 129.20, 128.91, $128.16,125.92,122.72,120.26,118.64,114.95,114.60,62.16$, 54.90, 54.33, 49.86, 45.95. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{O}_{2}$ [M+H]+: 512.2462, found: 512.2463.

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(3-chlorophenyl)prop-2-en-1-one (9h)

White solid, yield: 68%, m.p: $151.4 \sim 153.4^{\circ} \mathrm{C}$. purity: $97.62 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48 (s, 1H), 7.37 (dt, $J=10.3,4.6 \mathrm{~Hz}, 5 \mathrm{H}$), 7.28 (dd, $J=7.1,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.28,162.14,143.82,142.38,136.89,134.95$, $134.34,131.30,130.99,130.90,130.20$, 129.21, 128.92, 128.17, 127.83, 126.76, 123.01, 122.78, 114.71, 62.17, 54.35. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+: 430.1322$, found: 430.1324.

(E)-1-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(pyridin-4-yl)prop-2-en-1-one (9i)

White solid, yield: 65%, m.p: $126.6 \sim 128.4^{\circ} \mathrm{C}$. purity: $98.74 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ 7.37 (m, 3H), $7.32-7.27$ (m, 2H), 7.08 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.55 (s, 2H), $5.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 187.94, 162.38, $150.55,143.72,142.32,140.82,134.31,131.00,130.91,129.21$, 128.93, 128.17, 125.93, 122.79, 122.02, 114.82, 62.17, 54.35. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+$: 397.1665, found: 397.1666.

(E)-1-(4-((1-benzyl-1 H -1,2,3-triazol-4-yl)methoxy)phenyl)-3(pyridin -3-yl)prop-2-en-1-one (9j)

White solid, yield: 79%, m.p: $168.3 \sim 170.4{ }^{\circ} \mathrm{C}$. purity: $98.57 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.58(\mathrm{~m}$, $1 \mathrm{H}), 8.11-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}$, $4 \mathrm{H}), 7.29(\mathrm{dd}, J=7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}$, $2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 187.99, 162.21, $150.94,149.88,143.77,140.21,134.59,134.32,131.12,130.92$, 130.83, 129.20, 128.92, 128.16, 123.79, 123.65, 122.78, 114.75, 62.16, 54.34. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+: 397.1665$, found: 397.1665 .

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(3-chlorophenyl)prop-2-en-1-one (12a)

White solid, yield: 80%, m.p: $177.5 \sim 179.4^{\circ} \mathrm{C}$. purity: $96.90 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.15-7.94$ (m, 5H), 7.78 (d, $J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dt}, J=$ $17.4,7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.21\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.74 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 189.36, 161.76, 158.79, 143.99, 139.75, 134.36, 131.93, 131.57, 130.82, 129.27, 129.21, 128.91, 128.17, 124.10, 122.73, 122.68, 120.74, 114.56, 111.23, 62.16, 54.34. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]+: 429.1482$, found: 429.1485 .

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(pyridin-4-yl)prop-2-en-1-one (12b)

White solid, yield: 71%, m.p: $164.0 \sim 166.2^{\circ} \mathrm{C}$. purity: $99.14 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.17-8.06$ (m, $2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.75 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 4.44$ (d, $J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 186.13,153.42,150.74$, 145.48, 142.77, 139.13, 136.60, 131.66, 129.20, 128.57, 128.38, 127.25, 125.80, 123.57, 122.82, 111.93, 53.21, 38.35. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]+: 396.1824$, found: 396.1825.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (12c)

White solid, yield: 78%, m.p: $178.9 \sim 181.2^{\circ} \mathrm{C}$. purity: $98.92 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=$ $4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=11.6,5.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.75$ (d, $J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60$ (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.31$ (m, 5H), 7.25 (d, $J=$ $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.52 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.18,151.68,150.67,149.78,145.29,139.09$, $134.50,134.45,131.15,129.22,129.18,128.88,128.06,127.54$, 123.91, 123.72, 121.43, 112.07, 54.29, 39.24.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(3,5-dichlorophenyl)prop-2-en-1-one (12d)

White solid, yield: 69%, m.p: $189.4 \sim 190.3^{\circ} \mathrm{C}$. purity: $98.84 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}$, $2 \mathrm{H}), 4.93\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $4.53(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 186.07, 153.34, 145.51, 139.45, 138.90 , 136.60, 135.03, 131.65, 129.29, 129.19, 128.56, 128.37, 127.42, 125.96, 125.89, 123.55, 111.87, 53.21, 38.37. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]+: 463.1092$, found: 463.1093.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(3,5-difluorophenyl)prop-2-en-1-one (12e)

White solid, yield: 82%, m.p: $172.6 \sim 174.4^{\circ} \mathrm{C}$. purity: $97.45 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.08$ (s, 1H), 8.02 (dd, $J=12.1,3.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.69$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.25$ $(\mathrm{m}, 6 \mathrm{H}), 7.23\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $6.75(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $5.59(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 186.13, 164.41, 164.28, 162.00, 161.84, 153.33, 145.51, 136.60, 131.61, 129.19, 128.56, 128.37, 125.95, 125.64, 123.56, 111.87, 105.29, 53.21, 38.35. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}$ [M+H]+: 431.1683, found: 431.1684.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (12f)

White solid, yield: 73%, m.p: $182.3 \sim 184.4^{\circ} \mathrm{C}$. purity: $99.13 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.07$ (s, 1H), 8.00 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.20(\mathrm{~m}$, $5 \mathrm{H}), 7.08$ (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 187.63,163.15,161.52$, 152.63, 145.67, 136.63, 133.31, 130.70, 129.18, 128.55, 128.37, $126.95,123.55,121.21,111.90,105.84,91.46,56.49,55.97,53.19$, 38.42. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+$: 485.2189, found: 485.2188.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(4-fluorophenyl)prop-2-en-1-one (12g)

White solid, yield: 72%, m.p: $165.3 \sim 167.4^{\circ} \mathrm{C}$. purity: $97.98 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.17\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.74 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.59 (s, 2H), 4.43 (d, $J=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) δ 186.39, 164.77, 162.31, 153.12, 145.57, 140.79, 136.61, 132.31, 131.39, 129.19, 128.56, 128.37, 126.19, 123.55, 122.74, 116.40, 111.86, 53.20, 38.38. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]+$: 413.1778, found: 413.1779.

(E)-1-(4-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)-3-(furan-2-yl)prop-2-en-1-one (12h)

White solid, yield: 48%, m.p: $165.4 \sim 167.0^{\circ} \mathrm{C}$. purity: $97.99 \%{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{ddd}, J=12.0,10.9,6.6 \mathrm{~Hz}$, $5 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 2 \mathrm{H}), 4.42$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO) $\delta 185.90,153.08$, $145.54,140.66,136.61,134.84,132.22,131.20,129.85,129.19$, 129.04, 128.56, 128.37, 126.04, 123.56, 121.21, 111.91, 53.20, 38.37. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+$: 385.1665, found: 385.1667 .

(E)-1-(4-(((1-(4-chlorobenzyl)-1 H-1,2,3-triazol-4-yl)methyl)amino) phenyl)-3-(thiophen-2-yl)prop-2-en-1-one (12i)

White solid, yield: 69%, m.p: $159 \sim 160{ }^{\circ} \mathrm{C}$. purity: $98.05 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{dd}, J=11.7,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.50-$ 7.29 (m, 6H), 7.20 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 4.94\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $4.53(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.63,157.82,150.37,145.41,140.37,139.61,138.03,137.01$, 135.96, 135.07, 134.61, 133.94, 133.79, 130.79, 128.37, 125.93, 116.65, 57.13, 43.10. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]+$: 435.1046, found: 435.1044.

(E)-3-(4-chlorophenyl)-1-(4-(((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)prop-2-en-1-one (12j)

White solid, yield: 51%, m.p: $145.7 \sim 147.3^{\circ} \mathrm{C}$. purity: $97.83 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=14.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.29$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=19.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 4.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 4.52 $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 187.59, 160.11, 151.57, 145.39, 141.49, 135.92, 135.87, 133.83, 131.07, 130.27, 129.43, 129.15, 127.73, 122.40, 121.56, 120.21, 114.17, 113.72, 112.04, 55.33, 54.20, 39.23.

(E)-1-(4-(((1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl) amino)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (12k)

yellow liquid, yield: 50%. m.p: $179.7 \sim 180.3^{\circ} \mathrm{C}$ purity: 99.03%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 3 \mathrm{H}$), 7.75 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (s, 1H), 7.36 (dd, $J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89 (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})$, 6.68 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.48 (s, 2H), 5.06 (s, 1H), 4.52 (d, $J=2.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.18,160.08$, $151.79,150.60,149.73,145.36,139.03,135.91,134.57,131.17$, 130.31, 130.26, 127.35, 123.90, 123.80, 121.62, 120.20, 114.13, $113.73,112.05,55.31,54.18,39.16$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+: 426.1930$, found: 426.1931 .

(E)-3-(pyridin-3-yl)-1-(4-(((1-(2-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)prop-2-en-1-one (12I)

Yellow solid, yield: 67%, m.p: $189.6 \sim 191.4^{\circ} \mathrm{C}$. purity: 98.03%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.75 (d, $J=15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=28.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H}), 5.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 4.55 (s, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.18$, 151.71, 150.66, 149.78, 145.51, 139.09, 134.52, 132.94, 132.75, 131.15, 130.11, 128.88, 127.79, 127.50, 126.31, 123.88, 123.75, 122.71, 122.04, 112.09, 50.27, 39.18.

(E)-3-(pyridin-3-yl)-1-(4-(((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)phenyl)prop-2-en-1-one (12m)

White solid, yield: 68%, m.p: $181.7 \sim 182.4^{\circ} \mathrm{C}$. purity: $97.99 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (d, $J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.47$ (s, $1 \mathrm{H}), 7.35$ (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.68$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.58 (s, 2H), 5.04 (s, 1H, D ${ }_{2} \mathrm{O}$ exchangeable), $4.54(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.19,151.61,150.66,149.75,145.76,139.20$, 138.42 , 134.51, 131.62, 131.16, 130.98, 128.20, 127.63, 126.19, 126.16, 123.84, 121.62, 112.10, 111.98, 53.59, 39.21. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]+$: 464.1698 , found: 464.1699 .

(E)-1-(4-(((1-(4-chlorobenzyl)-1 H -1,2,3-triazol-4- yl)methyl)amino) phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (12n)

White solid, yield: 76%, m.p: $115.6 \sim 116.2{ }^{\circ} \mathrm{C}$. purity: $98.40 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85$ (s, $1 \mathrm{H}), 8.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.75(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}$, $2 \mathrm{H}), 4.91\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $4.53(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.19,151.69,150.67,149.77$, $145.57,139.14,134.92,134.56,132.96,131.17,131.11,129.39$, $127.49,123.84,123.77,123.72,121.49,112.08,53.52,39.18$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]+$: 430.1435, found: 430.1434.

