## The discovery and evaluation of diaryl ether

# heterocyclic sulfonamides as URAT1 inhibitors 

## for the treatment of gout.

R. Ian Storer, ${ }^{\text {a* }}$ Robert M. Owen, ${ }^{a}$ Andy Pike, ${ }^{\text {b* }}$ Caroline L. Benn, ${ }^{\mathrm{c}}$ Emma Armstrong, ${ }^{\mathrm{c}}$ David C. Blakemore, ${ }^{\text {a }}$ Magda Bictash, ${ }^{\text {c }}$ Kathryn Costelloe, ${ }^{\text {c }}$ Emma Impey, ${ }^{\text {c }}$ Philip H. Milliken, ${ }^{\text {d }}$ Elisabeth Mortimer-Cassen, ${ }^{\text {d, } \dagger}$ Hannah J. Pearce, ${ }^{\text {e }}$ Benjamin Pibworth, ${ }^{\mathrm{f}}$ Gianna Toschi ${ }^{\mathrm{f}}$
${ }^{a}$ Worldwide Medicinal Chemistry, ${ }^{b}$ Pharmacokinetics Dynamics and Metabolism, ${ }^{c}$ Discovery Biology, ${ }^{d}$ Drug Safety, ${ }^{e}$ Pharmaceutical Sciences, Research \& Development, Pfizer Ltd, The Portway, Granta Park, Cambridge, CB21 6GS, UK. ${ }^{\text {fPeakdale Molecular Ltd, Discovery Park }}$ House, Ramsgate Road, Sandwich, Kent, UK.

## Contents

1. Abbreviations
2. General chemistry experimental
3. Chemistry experimental synthetic procedures and analytical data with structures
4. Selected HPLC and NMR spectra of compounds $\mathbf{1 0 f} \& \mathbf{1 0 i}$
5. Polypharmacology profiles for compounds $\mathbf{1 0 f} \& \mathbf{1 0 i}$
6. General biology experimental procedures for URAT1 assay
7. Pharmacokinetic profile of compound $\mathbf{1 0} \mathbf{i}$ in the rat
8. Proposed metabolites of compound $\mathbf{1 0 f}$
9. Proposed metabolites of compound $\mathbf{1 0 i}$
10. Abbreviations - The following abbreviations and definitions have been used:
br broad
$\mathrm{CDCl}_{3} \quad$ Chloroform-d1

CI Confidence Intervals (95\% unless otherwise stated)
$\delta \quad$ Chemical shift
d Doublet
DMSO Dimethylsulfoxide
ELSD Evaporative Light Scattering Detector
ESI Electrospray ionisation
EtOAc Ethyl acetate
$\mathrm{Et}_{2} \mathrm{O} \quad$ Diethylether
h
Hour(s)

| HPLC | High Performance Liquid chromatography |
| :---: | :---: |
| HRMS | High resolution mass spectrum |
| LRMS | Low resolution mass spectrum |
| M | Molarity |
| m | Multiplet |
| Me | Methyl |
| mg | Milligram |
| min | Minute(s) |
| MHz | Megahertz |
| mL | Millilitre |
| mmol | Millimole |
| $m / z$ | Mass-to-charge ratio |
| N | Normal concentration |
| NMR | Nuclear Magnetic Resonance |
| $\mathrm{R}_{\mathrm{t}}$ | Retention time |
| s | Singlet |
| t | Triplet |
| UV-TIC | Ultraviolet-total ion count |

## 2. General Chemistry Experimental Prodecures

${ }^{1} \mathrm{H}$ Nuclear magnetic resonance (NMR) spectra were in all cases consistent with the proposed structures. Characteristic chemical shifts ( $\delta$ ) are given in parts-per-million downfield from tetramethylsilane using conventional abbreviations for designation of major peaks: e.g. s, singlet; d, doublet; t, triplet; m, multiplet; br, broad. The mass spectra $(\mathrm{m} / \mathrm{z})$ were recorded electrospray ionisation (ESI). The following abbreviations have been used for common solvents: $\mathrm{CDCl}_{3}$, deuterochloroform; $d_{6}$-DMSO, deuterodimethylsulphoxide; $d 4$-methanol, deuteromethanol. All solvents were reagent grade and, when necessary, were purified and dried by standard methods. Concentration of solutions after reactions and extractions involved the use of a rotary evaporator operating at a reduced pressure of ca. 20 Torr.

## LCMS conditions:

## System 1

A: $0.1 \%$ formic acid in water

B: $0.1 \%$ formic acid in acetonitrile

Column: C18 phase Phenomenex $20 \times 4.0 \mathrm{~mm}$ with 3 micron particle size
Gradient: $98-2 \%$ or $98-10 \%$ A over $1.5 \mathrm{~min}, 0.3 \mathrm{~min}$ hold, 0.2 re-equilibration, $1.8 \mathrm{~mL} / \mathrm{min}$ flow rate

UV: $210 \mathrm{~nm}-450 \mathrm{~nm}$ DAD

Temperature: $75^{\circ} \mathrm{C}$

## System 2

A: $0.1 \%$ formic acid in water

B: $0.1 \%$ formic acid in acetonitrile

Using either:
Column: Agilent Extend C18 phase $50 \times 3 \mathrm{~mm}$ with 3 micron particle size

Gradient: $95-0 \%$ A over 3.5 min , 1 min hold, 0.4 min re-equilibration, $1.2 \mathrm{~mL} / \mathrm{min}$ flow rate

Or

Column: C18 phase Waters Sunfire $50 \times 4.6 \mathrm{~mm}$ with 5 micron particle size
Gradient: $95-5 \%$ A over $3 \mathrm{~min}, 1 \mathrm{~min}$ hold, 2 min re-equilibration, $1 \mathrm{~mL} / \mathrm{min}$ flow rate
UV: $210 \mathrm{~nm}-450 \mathrm{~nm}$ DAD

Temperature: $50^{\circ} \mathrm{C}$

## Preparative HPLC:

Where singleton compounds are purified by preparative HPLC, there are two methods used, shown below:

## Method 1 acidic conditions

Column $\quad$ Gemini NX C18, $5 \mu \mathrm{~m} 21.2 \times 100 \mathrm{~mm}$

Temperature Ambient

Detection ELSD-MS

Mobile Phase A $0.1 \%$ formic acid in water

Mobile Phase B $\quad 0.1 \%$ formic acid in acetonitrile
Gradient initial $0 \%$ B, $1 \mathrm{~min}-5 \% \mathrm{~B} ; 7 \mathrm{~min}-98 \% \mathrm{~B} ; 9 \mathrm{~min}-98 \% \mathrm{~B} ; 9.1 \mathrm{~min}-5 \% \mathrm{~B} ; 10 \mathrm{~min}-$ 5\% B

Flow rate $\quad 18 \mathrm{~mL} / \mathrm{min}$

Injection volume 1000uL

## Method 2 basic conditions

Column Gemini NX C18, 5um $21.2 \times 100 \mathrm{~mm}$

Temperature Ambient
Detection ELSD-MS

Mobile Phase A $0.1 \%$ diethylamine in water

Mobile Phase B $\quad 0.1 \%$ diethylamine in acetonitrile

Gradient initial 0\% B, 1 min - 5\% B; 7 min - 98\% B; 9 min - $98 \%$ B; $9.1 \min -5 \%$ B; 10 min 5\% B

Flow rate $\quad 18 \mathrm{~mL} / \mathrm{min}$

Injection volume $1000 \mu \mathrm{~L}$

## 3. Chemistry experimental procedures and analytical data for intermediates and test compounds

## 4-(3-Chloro-4-fluorophenoxy)-3-cyano- $N$-(5-fluoropyridin-2-yl)benzenesulfonamide (10a)



A suspension of 3-cyano-4-fluoro- $N$-(5-fluoropyridin-2-yl) benzene sulfonamide (28, 200.0 mg , 0.68 mmol ), 3-chloro-4-fluorophenol ( $29 \mathrm{a}, 148.9 \mathrm{mg}, 1.02 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(282 \mathrm{mg}, 2.04$ $\mathrm{mmol})$ in DMSO ( 3 mL ) was heated at $60^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was poured into water $(80 \mathrm{~mL})$ and product extracted into EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The combined organics were concentrated and purified on silica gel using EtOAc:heptanes (1:1) to give the title compound (10a, 230 mg , $54 \%$ ) as a white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.23-7.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-117.00,-130.05$ : HPLC (syst $1,4.5 \mathrm{~min}$, acid) $\mathrm{R}_{\mathrm{t}} 3.12 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS $m / z 421.95 \& 423.90$ [MH] ${ }^{+}$; HRMS (ESI) $m / z$ : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 422.0172$, found 422.0162.

## 3-Cyano-4-(4-cyanophenoxy)- N -(5-fluoropyridin-2-yl)benzenesulfonamide (10b)



A suspension of 3-cyano-4-fluoro- $N$-(4-fluorophenyl) benzenesulfonamide (28, $11.8 \mathrm{mg}, 0.040$ $\mathbf{m m o l}$ ), 4-hydroxybenzonitrile (29b, $7.1 \mathrm{mg}, 0.060 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(16.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in DMSO ( 0.6 mL ) was heated at $90^{\circ} \mathrm{C}$ for 24 h then cooled to rt . The reaction mixture was filtered, concentrated and purified by preparative HPLC to give the title compound as a beige solid (10b, $15.4 \mathrm{mg}, 97 \%$ ). HPLC (syst 2, 4.5 min , acid) $\mathrm{R}_{\mathrm{t}} 3.36 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS m/z 395 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S} 395.0609$, found 395.0606.

## 3-Cyano-4-(3-cyanophenoxy)-N-(5-fluoropyridin-2-yl)benzenesulfonamide (10c)



A suspension of 3-cyano-4-fluoro- $N$-(4-fluorophenyl) benzenesulfonamide (28, $11.8 \mathrm{mg}, 0.040$ mmol), 3-hydroxybenzonitrile (29c, $7.1 \mathrm{mg}, 0.060 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(16.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in DMSO $(0.6 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 24 h then cooled to rt . The reaction mixture was filtered, concentrated and purified by preparative HPLC to give the title compound as a beige solid (10c, $11.2 \mathrm{mg}, 71 \%$ ). HPLC (syst 2, 4.5 min , acid) $\mathrm{R}_{\mathrm{t}} 3.38 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS m/z 395 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{FN}_{4} \mathrm{O}_{3} \mathrm{~S} 395.0609$, found 395.0611.

## 3-Cyano-4-(3-cyano-4-fluorophenoxy)- $N$-(4-fluorophenyl)benzenesulfonamide (10d)



A suspension of 3-cyano-4-fluoro- $N$-(4-fluorophenyl) benzenesulfonamide (28, $100 \mathrm{mg}, 0.339$ mmol ), 2-fluoro-5-hydroxybenzonitrile ( $\mathbf{2 9 d}, 46.4 \mathrm{mg}, 0.339 \mathrm{mmol}$ ), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $117 \mathrm{mg}, 0.847$ $\mathrm{mmol})$ in DMSO $(1.0 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 16 h then cooled to rt . The reaction mixture was filtered, concentrated and purified by preparative HPLC to give the title compound as a beige solid (10d, $32 \mathrm{mg}, 23 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d 6-\mathrm{DMSO}$ ) $\delta 11.19$ (bs, 1 H ), 8.41 (d, $J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.21(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09$ ( $\mathrm{m}, 2 \mathrm{H}$ ); HPLC (syst 2, 4.5 min , acid) $\mathrm{R}_{\mathrm{t}} 2.87 \mathrm{~min}$ ELSD $>95 \%$ purity; LRMS $m / z 412.92[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} 413.0514$, found 413.0512.

## 3-Cyano-4-(4-cyano-3-fluorophenoxy)- $N$-(5-fluoropyridin-2-yl)benzenesulfonamide (10e)



A suspension of 3-cyano-4-fluoro- $N$-(5-fluoropyridin-2-yl)benzene sulfonamide (28, $300 \mathrm{mg}, 1.02$ mmol ), 2-fluoro-4-hydroxybenzonitrile ( $\mathbf{2 9} \mathbf{e}, 208 \mathrm{mg}, 1.52 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $421 \mathrm{mg}, 3.06$ $\mathrm{mmol})$ in DMSO ( 5 mL ) was heated to $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was poured into water $(80 \mathrm{~mL})$ and product extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The combined organics were concentrated
and purified by reverse phase chromatography ( $60 \mathrm{~g} \mathrm{C18}, \mathrm{MeCN} /$ water, $3: 97$ to 100:0, formic acid additive) to afford the desired product as a white solid (10e, $110 \mathrm{mg}, 26 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $d 4$-methanol) $\delta 8.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85(\mathrm{dd}, J=8.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{td}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.10(\mathrm{~m}$, 2 H ); ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, d 4$-methanol) $\delta-115,-136$ : HPLC (syst $1,4.5 \mathrm{~min}$, acid) $\mathrm{R}_{\mathrm{t}} 2.95 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS $m / z 412.96[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} 413.0514$, found 413.0506.

## 4-(3-Chloro-4-cyanophenoxy)-3-cyano- $N$-(5-fluoropyridin-2-yl)benzenesulfonamide (10f)



Smaller scale synthesis batch:
A suspension of 3-cyano-4-fluoro- N -(5-fluoropyridin-2-yl)benzene sulfonamide (28, $10.5 \mathrm{~g}, 35.6$ mmol ), 2-chloro-4-hydroxybenzonitrile ( $\mathbf{2 9 f}, 8.19 \mathrm{~g}, 53.3 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(14.74 \mathrm{~g}, 106.7$ $\mathrm{mmol})$ in DMSO ( 100 mL ) was heated to $80^{\circ} \mathrm{C}$ for 44 h . The reaction mixture was cooled to rt then poured into sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and $\operatorname{EtOAc}(1 \mathrm{~L})$ was added. The organic phase was washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 200 \mathrm{~mL})$, water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$ then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give the crude product which was purified by reverse phase chromatography ( $400 \mathrm{~g}, \mathrm{C}-18$ column, eluting with $0-100 \% \mathrm{MeCN} /$ water with $0.1 \%$ formic acid) to afford the title compound as a colourless solid (10f, $6.98 \mathrm{~g}, 46 \%$ ).

## Scale up synthesis batch:

A mixture of 3-cyano-4-fluoro- $N$-(5-fluoropyridin-2-yl)benzenesulfonamide (28, $110 \mathrm{~g}, 0.38$ mol ), 2-chloro-4-hydroxybenzonitrile ( $29 \mathrm{f}, 85.8 \mathrm{~g}, 0.56 \mathrm{~mol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(154 \mathrm{~g}, 1.12 \mathrm{~mol})$ in DMSO (1.1 L) was heated to $80^{\circ} \mathrm{C}$ for 32 h , then stirred for an additional 16 h at rt . The reaction mixture was poured in to water ( 3 L ). The combined organic layers were washed with water ( 1 L ), citric acid solution ( 117 g , in $3.5 \mathrm{~L}, 3 \% \mathrm{w} / \mathrm{w}, 1.5 \mathrm{~mol}$ of citric acid for 1 mol of product) and water $(1 \mathrm{~L})$. The organic phase was concentrated in vacuo to give crude material $(136 \mathrm{~g})$. The compound was crystallised from EtOAc ( $1.6 \mathrm{~L}, 12 \mathrm{~mL} / \mathrm{g}$ ) to give material ( 110 g ). This material was combined with 35 g of previously obtained material then partially dissolved in boiling ethyl acetate
( $\sim 1.5 \mathrm{~mL}, 10 \mathrm{~mL} / \mathrm{g}$ ca.). The mixture was left to cool overnight to room temperature and filtered to afford the title compound as a white solid (10f, $113 \mathrm{~g}, 54 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 11.34$ (br. s., 1 H ), 8.44 (d, $J=2.34 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.22 (d, $J=2.73 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16$ (dd, $J=2.30,9.00 \mathrm{~Hz}, 1 \mathrm{H}$, partially obscured), 8.13 (d, $J=8.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (d, $J=2.34$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.71 (ddd, $J=3.10,8.60,8.60 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.47 (dd, $J=2.34,8.98 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.32 (d, $J=8.98$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.13 (dd, $J=3.90,8.98 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, d_{6}$-DMSO) $\delta 160.6,158.6,155.2$ $(\mathrm{d}, \mathrm{J}=248.0 \mathrm{~Hz}), 148.0,138.0,137.2,137.0,135.6(\mathrm{~m}), 134.6,134.0,126.8(\mathrm{~d}, \mathrm{~J}=22.7 \mathrm{~Hz})$, $122.4,120.4,119.1,116.1,114.8,114.6(\mathrm{~d}, \mathrm{~J}=4.40 \mathrm{~Hz}), 109.7,104.2 ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz} d_{6}{ }^{-}$ DMSO): $\delta-134.44$ : HPLC (syst $1,4.5 \mathrm{~min}$, acid) $\mathrm{R}_{\mathrm{t}} 3.03 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS $m / z$ $428.95[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClFN}_{4} \mathrm{O}_{3} \mathrm{~S} 429.0219$, found 429.0221 .

## 4-(2-Chloro-4-cyanophenoxy)-3-cyano- N -(5-fluoropyridin-2-yl)benzenesulfonamide (10g)



A suspension of 3-cyano-4-fluoro- $N$-(5-fluoropyridin-2-yl) benzene sulfonamide (28, 350 mg , 1.19 mmol ), 3-chloro-4-hydroxybenzonitrile ( $\mathbf{2 9 g}$, $275 \mathrm{mg}, 1.79 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(493 \mathrm{mg}, 3.57$ mmol ) in DMSO ( 5 mL ) was heated to $80^{\circ} \mathrm{C}$ for 16 h . The reaction was diluted with EtOAc ( 55 mL ) and washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x} 60 \mathrm{~mL})$. The combined organics were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated to afford a yellow solid ( 366 mg ). The crude material was purified by flash chromatography (elution: $0-60 \% \mathrm{EtOAc} / \mathrm{heptane}$, then $10 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ) and Biotage SP1 ( $30 \mathrm{~g}, \mathrm{C}-18$ column, eluting with $10-60 \% \mathrm{MeCN} /$ water with $0.1 \%$ formic acid) to afford the title compound as a yellow solid ( $\mathbf{1 0 g}, 175 \mathrm{mg}, 34 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.36(\mathrm{bs}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (dd, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd} J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, d 6-\mathrm{DMSO}$ ) $\delta$-134.57: HPLC (syst 2, 4.5 min , buffer) $\mathrm{R}_{\mathrm{t}} 2.59 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS m/z $428.88[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClFN}_{4} \mathrm{O}_{3} \mathrm{~S}$ 429.0219, found 429.0212.


A suspension of 2-chloro-5-hydroxybenzonitrile ( $\mathbf{2 8}, 52 \mathrm{mg}, 0.339 \mathrm{mmol}$ ), 3-cyano-4-fluoro- N -(5-fluoropyridin-2-yl)benzene sulfonamide (29h, $100 \mathrm{mg}, 0.339 \mathrm{mmol}$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(117 \mathrm{mg}, 0.847$ $\mathrm{mmol})$ in DMSO $(1 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 17 h . Half of the reaction mixture was submitted to preparative HPLC to give the title compound as cream coloured solid ( $\mathbf{1 0 h}, 21 \mathrm{mg}, \mathbf{3 0 \%}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta 11.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=9.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, d6-DMSO) $\delta-134.5$ : HPLC (syst $2,4.5 \mathrm{~min}$, acid) $\mathrm{R}_{\mathrm{t}} 2.96 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS $m / z 428.95,430.90[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{ClFN}_{4} \mathrm{O}_{3} \mathrm{~S}$ 429.0219, found 429.0221.

## 4-(3-Chloro-4-(hydroxymethyl)phenoxy)-3-cyano- N -(5-fluoropyridin-2-yl)benzene

 sulfonamide (10i)

To a suspension of 4-(3-chloro-4-formylphenoxy)-3-cyano- $N$-(5-fluoropyridin-2-yl) benzenesulfonamide ( $\mathbf{1 0 j}, 276.9 \mathrm{~g}, 0.64 \mathrm{~mol})$ in methanol $(5.5 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}$ portion-wise over 25 min . The reaction was stirred at rt for 1.5 h , cooled to $0^{\circ} \mathrm{C}$ then water $(4.8$ L) slowly added. The reaction mixture was warmed to rt and $1 \mathrm{M} \mathrm{HCl}(2.5 \mathrm{~L})$ was slowly added resulting in a suspension of the product. The mixture was left to stir at rt for 1 h and then the suspension was filtered and dried for 16 h at $40^{\circ} \mathrm{C}$ under vacuum to give crude product. The crude product was dissolved in acetone ( 2.5 L ) and then silica ( 380 g ) was added to the vessel. The mixture was stirred at rt for 20 min and then filtered through a silica pad and washed with acetone $(1.5 \mathrm{~L})$. Water $(10 \mathrm{~L})$ was slowly added resulting in the precipitation of the product. The mixture was left to stir at rt for 1 h and then the suspension was filtered and the residue dried overnight at $40{ }^{\circ} \mathrm{C}$ to yield 4-(3-chloro-4-(hydroxymethyl)phenoxy)-3-cyano-N-(5-fluoropyridin-2yl)benzenesulfonamide as a cream powder (10i, $268.2 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d 6-\mathrm{DMSO}$ )
$\delta 11.31$ (br. s., 1H), 8.39 (d, $J=2.34 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ (d, $J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, J=2.34, 8.98 Hz , 1 H ), 7.70 (dd, J=8.60, $3.10 \mathrm{~Hz}, 1 \mathrm{H}$, partially obscured), $7.66(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.73$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=2.34,8.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=3.51,8.98 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.90 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50(\mathrm{t}, J=5.46 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=5.07 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101MHz, d6-DMSO) $\delta 162.48,156.42$ ( $\mathrm{d}, \mathrm{J}=247 \mathrm{~Hz}$ ), 152.96, 147.99, 138.19, 135.63 (d, partially obscured), 135.54, 134.66, 133.88, $132.52,130.17,126.88(\mathrm{~d}, \mathrm{~J}=19.1 \mathrm{~Hz}), 121.82,120.02,117.05,115.11,114.54(\mathrm{~d}, \mathrm{~J}=5.14 \mathrm{~Hz})$, 102.89, 60.38; ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$-134.5: HPLC (syst 1, 25 min , acid) $\mathrm{R}_{\mathrm{t}} 14.09 \mathrm{~min}$, ELSD 98.9\% purity; LRMS m/z $434.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClFN}_{3} \mathrm{O}_{4} \mathrm{~S} 434.0372$, found 434.0369.

## 4-(3-Chloro-4-formylphenoxy)-3-cyano- N -(5-fluoropyridin-2-yl)benzenesulfonamide (10j)



A suspension of 3-cyano-4-fluoro-N-(5-fluoropyridin-2-yl) benzene sulfonamide (28, 108.2 g , $0.37 \mathrm{~mol}), \mathrm{K}_{2} \mathrm{HPO}_{4}(191.3 \mathrm{~g}, 1.10 \mathrm{~mol})$ and 2-chloro-4-hydroxybenzaldehyde ( $\mathbf{2 9} \mathbf{j}, 63.1 \mathrm{~g}, 0.40$ mmol ) in DMSO ( 760 mL ) was heated to $100^{\circ} \mathrm{C}$ and left to stir for 2.5 h then cooled to rt . The reaction mixture was poured into water $(3.0 \mathrm{~L})$ resulting in some precipitation of product. EtOAc $(3.0 \mathrm{~L})$ was added and the aq. layer acidified to pH 3 using conc. HCl . The aq. layer was removed and the resulting suspension filtered and solid washed with EtOAc ( 200 mL ) and $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ to give crude product. The organic filtrates were retained and washed with $1 \mathrm{M} \mathrm{HCl}(700 \mathrm{~mL})$ and sat. brine $(2 \times 700 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$, filtered and concentrated to yield more crude product. Both batches of crude product were combined and slurried in EtOAc ( 750 mL ) at reflux for 45 min . The mixture was cooled to rt, filtered and the solid washed with EtOAc ( $2 \times 100 \mathrm{~mL}$ ). The product was died overnight under vacuum at $40^{\circ} \mathrm{C}$ to yield 4-(3-chloro-4-formylphenoxy)-3-cyano-N-(5-fluoropyridin-2-yl)benzenesulfonamide ( $\mathbf{1 0 j}, 121.1 \mathrm{~g}, 77 \%$ ) as a cream powder. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta 11.34$ (brs, 1H), 10.28 (s, 1H), 8.42 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.20 (d, $J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=8.6 \mathrm{~Hz}, 3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$
(dd, $J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, d 6-\mathrm{DMSO}$ ) $\delta-134.4$; HPLC (syst $1,4.5 \mathrm{~min}$, acid) $\mathrm{R}_{\mathrm{t}} 3.58$ min, $\mathrm{ELSD}>95 \%$ purity; LRMS $m / z 432.09[\mathrm{M}+\mathrm{H}]^{+}$.

## 3-Cyano-4-fluoro-N-(5-fluoropyridin-2-yl)benzenesulfonamide (28)



Solid 3-Cyano-4-fluorobenzene-1-sulfonyl chloride (27, $60.3 \mathrm{~g}, 274 \mathrm{mmol}$ ) was added to a solution of 5-fluoropyridin-2-amine ( $40.0 \mathrm{~g}, 357 \mathrm{mmol}$ ) and pyridine ( $67 \mathrm{~mL}, 823 \mathrm{mmol}$ ) in DCM $(1 \mathrm{~L})$ at rt then stirred for 3 h . The solvent was removed under vacuum and the residue stirred in dilute $\mathrm{HCl}(2 \mathrm{~N}, 850 \mathrm{~mL})$ for 16 h . The precipitate was removed by filtration and the residue washed with water ( 200 mL ) and dried under high vacuum overnight. The crude material was triturated with TBME ( 500 mL ) to give the title compound ( $\mathbf{2 8}, 70.3 \mathrm{~g}, 87 \%$ ) as an orange solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta 11.45(\mathrm{bs}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.18$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}-\mathrm{NMR}(376 \mathrm{MHz}, d 6-\mathrm{DMSO}) \delta-$ 101.50, -134.20: HPLC (syst 2, 4.5 min , acid) $\mathrm{R}_{\mathrm{t}} 2.55 \mathrm{~min}$, ELSD $>95 \%$ purity; LRMS $m / z 296.06$ $[\mathrm{M}+\mathrm{H}]^{+}$.

The full syntheses of compounds $\mathbf{1 1 - 1 7} \& \mathbf{2 3 - 2 6}$ and relevant intermediates can be found in published patent application WO2014170792. The full syntheses of compounds 18-22 and relevant intermediates can be found in published patent application WO2014170793.

## 4. Selected HPLC, MS and NMR spectra




Mobile Phase A: $\quad 0.1 \%$ Formic Acid in Water Mobile Phase B: $\quad 0.1 \%$ Formic Acid in Acetonitrile

| Time $(\mathrm{min})$ | $\% \mathrm{~A}$ | $\% \mathrm{~B}$ |
| :---: | :---: | :---: |
| 0.00 | 95 | 5 |
| 0.5 | 95 | 5 |
| 4 | 0 | 100 |
| 5.4 | 0 | 100 |
| 5.5 | 95 | 5 |


| Detection: | 215 nm <br> $\mathrm{APCI}(+) 175-2000$ Daltons |
| :--- | :--- |
| Flow: | $0.750 \mathrm{~mL} / \mathrm{min}$ |



$$
\begin{aligned}
& \text { \# Meas. R Area Area \% Signal Desc. } \\
& 14.706 \text { 1.842e3 } 100.000 \text { DAD1 B, Sig=215 }
\end{aligned}
$$

\# Meas. R Area Area of Signal Desc.
 $14.724 \quad 2.084$ e6 100.000 MSD1 429, EIC=4



Column:
Kinetic C18 $100 \mathrm{~mm} \times 3.0 \mathrm{~mm} 2.6 \mathrm{u}$

## Gradient Conditions:

Mobile Phase A: $\quad 0.1 \%$ Formic Acid in Water Mobile Phase B: $\quad 0.1 \%$ Formic Acid in Acetonitrile

| Time $(\mathrm{min})$ | $\% \mathrm{~A}$ | $\% \mathrm{~B}$ |
| :---: | :---: | :---: |
| 0.00 | 95 | 5 |
| 0.5 | 95 | 5 |
| 4 | 0 | 100 |
| 5.4 | 0 | 100 |
| 5.5 | 95 | 5 |

[^0]

Spectra below are for the intergrated MS peaks from above.
See Spetra header for detalls.

\# Meas. R Area Area 宩 Signal Desc.

$14.4492 .154 e 3$ 100.000 DAD1 B, Sig=215

4 Meas. R Area Area \% Signal Desc.
 $14.4693 .276 \mathrm{e} 6 \quad 100.000$ MSD1 434, EIC=4


## 5. Polypharmacology profiles

Compound 10f
: Cerep Full Safety Panel (10uM,


## Compound 10i

\%Cerep Full Safety Panel (10uM,

| Functional Agonism |  | \% Resp | $\mathrm{EC50}(\mathrm{nM})$ | Ion Channel - Bindin | \% Inn | IC50 ( nM ) | K 1 ( m M) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adenosine A1 |  | 2 |  | L-Ty pe Calcium (Verapam | 4 |  |  |  |  |
| Adenoshe A2a |  | 0 |  | L-Ty pe Calcium (Nrealph | 7 |  |  |  |  |
| Adrenergle Alpha 1a |  | 1 |  | L-Ty pe Calcum (Dirlazet | -11 |  |  | I' |  |
| Adrenerglc Alpna 23 |  | -2 |  | GAEAa (CI Cnannel | 28 |  |  | , |  |
| Adrenergle Alpha 20 |  | -0 |  | GABAal Receptol | -17 |  |  | \| | Y |
| Adrenergle Beta 1 |  | 1 |  | GABAa (Benzodiazepine ste | 47 |  |  | N-N |  |
| Adrenergle Beta 2 |  | 1 |  | AMPA Receptor | 3 |  |  | $\int^{5} 0^{11}$ |  |
| Anglotensin 1 |  | 0 |  | NMDA Recepto | 8 |  |  |  |  |
| Cannabinold 1 |  | 14 |  | NMDA Receptor (PCP \$1 | -2 |  |  |  |  |
| Cnolecy stokinh : |  | 2 |  | Nicotinic ACn Receptor (Musc | -13 |  |  |  |  |
| Dopamine 1 |  | 1 |  | Nicotinic ACn Receptor (Neuron | 2 |  |  | Additional Data |  |
| Dopamine 28 |  | -8 |  | Serotonin 3 | -8 |  |  | Chemical Properties |  |
| Endothelli A |  | 4 |  | Soolum (5re 2 | 5 |  |  |  |  |
| Histamine 1 |  | -0 |  |  |  |  |  | Parent Molecular Weight | 433.84 |
| Histamine |  | 1 |  | Transporters - Binding | \% inn | IC50 ( nM ) | K 1 ( nM ) | oLOGP | 3.40 |
| Histamine : |  | 8 |  | Norepinephrine Transporte | -14 |  |  | TPSA | 120.69 |
| Muscarinic 1 |  | 4 |  | Dopamine Transporte | 9 |  |  | Promiscuitly Panel Data - Binding (10ul |  |
| Muscarinie 2 |  | -7 |  | Serotonin Transportel | -1 |  |  | \% Inh |  |
| Muscarinio 3 |  | 0 |  | Cnolline Transporte | -34 |  |  |  |  |
| Neurokinin 1 |  | -1 |  |  |  |  |  | Adenergic Alpha 1a $\quad-12$ |  |
| Oplow Dera |  | -16 |  | GABA Transporter | -6 |  |  | Adrenergic Eeta 2 -8 <br>   <br> 8  |  |
| Oplola Kappa |  | 15 |  | Enzyme | \% inh | IC50 ( nM ) |  | Cannabinoid 1 |  |
| Oplow M |  | -12 |  | Anglotensin Convering Enzy $n$ | -2 | $\square$ |  | Dopamine $1 \quad-1$ |  |
| Serotonin 1a |  | 11 |  |  | 5 |  |  | Histamine 1 4 |  |
| serotonin 10 |  | 4 |  | Cy cloory genase : | 15 |  |  | Muscarinic 1Opioid Mu | -11 |
| Serotonin 23 |  | 1 |  | Monoamine Oxidasf | -3 |  |  |  | 1 |
| Serotonin 20 |  | -3 |  | PDE35 | 11 |  |  | Other |  |
| Serotonin 4 e |  | -0 |  | PDE4D2 |  |  |  |  |  |
| Vasopressin 1a |  | 18 |  |  | -11 |  |  | L-Type Calcium (Functional) - IC50 (n) |  |
| Corticotropnin Releasing Factor 1 (CF Melanocorth 2 (MC2R) <br> Thy rotopin Releasing homone 1 (TRH- |  |  |  | Kinase | \% inh | IC50 ( nM ) |  | Nav1.5 (Q Patch) - IC50 (n) 8 |  |
|  |  |  |  | Adi Kinase | -5 | $\square$ |  | hERG (Functional) - IC50 (nM $>100000.0$ |  |
|  |  |  |  | Aurora A Kinase |  |  |  | Dofetilide Binding - IC50 (n) | $>100000$ |
| Functional Antagonism |  | IC50 ( nM ) |  | EGFR Kinasi | 2 |  |  |  |  |
|  | \% Inh |  | $\mathrm{KD}(\mathrm{nM})$ | Lek Kinase | -22 |  |  |  |  |
| Adrenergle Alpha 1 a | 14 |  |  | p38 MAP Kinase | -0 |  |  |  |  |
| Adrenergle Alpha 20 | 14 |  |  | Sre Kinase | 18 |  |  |  |  |
| Adrenerglo seta 1 | -8 |  |  | VEGFR2 (KDR) Kinat | -8 |  |  |  |  |
| Adrenergle Beta 2 | -6 |  |  |  |  |  |  |  |  |
| Angletensin 1 | 23 |  |  | NHR - Bindinç | \% $\ln \mathrm{n}$ | IC50 $(\mathrm{nM})$ | $\mathrm{KI}(\mathrm{nM})$ |  |  |
| Cannabinold 1 | -4 |  |  | Androgen Receptor (Binoing | -8 |  |  |  |  |
| Dopamine 1 | -8 |  |  |  |  |  |  |  |  |
| Dopamine 26 | 19 |  |  | Gucocoricold Receptor (bild | 4.6 |  |  |  |  |

## 6. General biology experimental procedures

## Biological Assay

## a. Generation of a custom clonal cell line for URAT1 transporter activity assay

The nucleotide sequence for the long isoform of URAT1 (NM_144585) was C-terminally fused to that of enhanced green fluorescent protein (eGFP) (hereinafter referred to as URAT1(L)GFP). The combined sequence was codon-optimised and custom synthesized. The synthesized sequence was generated in pDONR221 Gateway entry vector (Invitrogen Life Technologies) prior to cloning in pLenti6.3/V5 Gateway destination vector (Invitrogen Life Technologies). A schematic of the URAT1(L)GFP construct is set forth in Figure 1A. The nucleotide and amino acid sequence of the URAT1(L)GFP construct is set out in Figure 1B, which also shows alignment of the nucleotide sequence with NM_144585.

Lentiviral particles were generated according to ViraPower HiPerform expression system procedure (Invitrogen Life Technologies) and used to transduce CHO cells. Blasticidin selection enabled the generation of a stable clonal pool of cells, confirmed by expression of GFP and V5 epitope. The clonal pools were sorted using fluorescence-activated cell sorting (FACS) on the basis of GFP expression with the gating set at the top $50 \%$ of expression into single cells which were subsequently expanded to generate clonal lines. One clone was identified with the best assay performance as determined by maximal separation between complete inhibition of uric acid transport (with $10 \mu \mathrm{M}$ benzbromarone) and no inhibition (DMSO). This cell line was used for all screening activities and is referred to as CHO-URAT1(L)GFP\#8 or CHO\#8.

## b. URAT-1 Inhibitor activity

The potency of the compounds of formula (I) as inhibitors of the URAT-1 transporter was determined as follows.

CHO\#8 cells were cultured in cell line maintenance flasks in medium consisting of Dulbecco's modified Eagle medium (DMEM) with high glucose and sodium pyruvate ( 4.5 g of glucose per litre, Invitrogen Life Technologies), supplemented with heat-inactivated foetal bovine serum (FBC, $10 \% \mathrm{v} / \mathrm{v}$ ), 1x NEAA (non-essential amino acids) and blasticidin ( $10 \mu \mathrm{~g} / \mathrm{ml}$ ). Cultures were grown in $175 \mathrm{~cm}^{2}$ tissue culture flasks in a humidified incubator at approximately $37{ }^{\circ} \mathrm{C}$ in approximately $95 \%$ air $/ 5 \% \mathrm{CO}_{2}$. Near confluent $\mathrm{CHO} \# 8$ cell cultures were harvested by trypsinisation, re-suspended in culture medium and the process was repeated once or twice weekly to provide sufficient cells for use.

Assay ready flasks were generated by the same method, except the cells were not cultured in blasticidin.

Assay ready frozen cells were generated by freezing $40,000,000$ cells in 1 mL of FBS (without blasticidin) containing $10 \%$ DMSO per vial. One vial was sufficient for 5 assay plates. Each vial was thawed rapidly to $37^{\circ} \mathrm{C}$, washed and re-suspended in pre-warmed culture medium for seeding onto assay plates.

CHO\#8 cells were seeded onto Cytostar ${ }^{\mathrm{TM}} 96$-well plates at a density of $5 \times 10^{5}$ cells per well. The cells were cultured for 1 day at approximately $37^{\circ} \mathrm{C}$ in a humidified incubator containing approximately $5 \% \mathrm{CO}_{2}$ in air. After approximately 24 h culture, cells were used for uptake experiments.

On the day of assay, culture medium was removed from the wells and the cells were washed once with $50 \mu \mathrm{~L}$ of chloride-containing buffer $\left(136.7 \mathrm{mM} \mathrm{NaCl}, 5.36 \mathrm{mM} \mathrm{KCl}, 0.952 \mathrm{mM} \mathrm{CaCl}_{2}, 0.441\right.$ $\mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.812 \mathrm{mM} \mathrm{MgSO} 4,5.6 \mathrm{mM}$ D-glucose, $0.383 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4} .2 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{mM}$ HEPES, pH 7.4 with NaOH ). The cells were pre-incubated with another $50 \mu \mathrm{~L}$ of chloride-containing buffer for one hour at approximately $37^{\circ} \mathrm{C}$ in a humidified incubator containing approximately $5 \% \mathrm{CO}_{2}$ in air.

Assay compound plates were prepared by diluting the compounds of formula (I) with chloridefree buffer ( 125 mM Na-gluconate, 4.8 mM K-gluconate, 1.3 mM Ca -gluconate, $1.2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$, $1.2 \mathrm{mM} \mathrm{MgSO}_{4}, 5.6 \mathrm{mM}$ D-glucose, 25 mM HEPES, pH 7.4 with NaOH ) in $100 \%$ DMSO to a final concentration of $1 \%$ DMSO. $\left[{ }^{14} \mathrm{C}\right]$-Uric acid working stock was made by addition of radiolabeled compound to a final concentration of 120 nM in chloride-free buffer. In all wells, the final assay concentration of solvent (DMSO) was $0.25 \%$; the final assay concentration of [ $\left.{ }^{14} \mathrm{C}\right]$-uric acid was 30 nM in chloride-free buffer and the final compound of formula (I) concentrations ranged from 0 to $10 \mu \mathrm{M}$. The vehicle comparator was DMSO (i.e. no inhibition of uric acid transport) and the pharmacological blockade (i.e. $100 \%$ inhibition of uric acid transport) was defined by benzbromarone at $10 \mu \mathrm{M}$ final assay concentration.

After pre-incubation, cells were washed with $50 \mu \mathrm{~L}$ of chloride-free buffer and another $50 \mu \mathrm{~L}$ of chloride-free buffer was added. Thereafter, $25 \mu \mathrm{~L}$ of compound of formula (I) was added from the prepared compound plate and the cells were pre-incubated for 15 min prior to the addition of 25 mL of $\left[{ }^{14} \mathrm{C}\right.$ ] uric acid. The plate was incubated at room temperature and protected from light for three hours prior to measuring proximity-induced scintillation on a Wallac microbeta at 1 minute/well.

The accumulation of $\left[{ }^{14} \mathrm{C}\right]$-uric acid into $\mathrm{CHO} \# 8$ cells was calculated and the $\mathrm{IC}_{50}(\mu \mathrm{M})$ values, defined as the concentration of inhibitor required for $50 \%$ inhibition of transport, were determined from a 4 parameter logistic fit to generate sigmoid curves from dose response data.

## c. URAT-1 Assay Standards

A number of literature reported compounds were run initially in our uric acid radiolabel uptake assay to help validate the assay. Initial tests revealed good correlation with reported data for these compounds across a range of $\mathrm{IC}_{50}$ values (see Table 1 below for values obtained and Figure 2 for
benzbromarone data). A benzbromarone dose response curve was included on every assay plate for every assay run to assess assay reproducibility over time (both between and within assay run variability). For benzbromarone, 5-6 independent $\mathrm{IC}_{50}$ determinations provided a geometric mean with less than 2 -fold error, based on $95 \%$ confidence intervals.

Table 1. URAT1 assay standards

| Compound | Structure | Pfizer $\mathbf{I C}_{50}$ | Reported $\mathrm{IC}_{50}$ |
| :---: | :---: | :---: | :---: |
| Benzbromarone |  | $\begin{gathered} 22 \mathrm{nM} \\ \mathrm{n}=965 \\ 21-23 \mathrm{nM}(95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} 26 \mathrm{nM} \\ (+/-3 \mathrm{nM})^{1} \end{gathered}$ |
| 6-OH Benzbromarone |  | 34 nM $(\mathrm{n}=6)$ $18-64 \mathrm{nM}(95 \% \mathrm{CI})$ | $\begin{gathered} 138 \mathrm{nM} \\ (+/-88 \mathrm{nM})^{1} \end{gathered}$ |
| Lesinurad (RDEA-594) |  | $\begin{gathered} 6704 \mathrm{nM} \\ (\mathrm{n}=5) \\ 1976-22747 \mathrm{nM}(95 \% \\ \mathrm{CI}) \end{gathered}$ | $3360 \mathrm{nM}^{2}$ |
| Verinurad (RDEA3170) |  | 23 nM $(\mathrm{n}=46)$ $20-26 \mathrm{nM}(95 \% \mathrm{CI})$ | $24 \mathrm{nM}^{3}$ |

${ }^{1}$ M. F. Wempe et al., J. Med. Chem., 2011, 54, 2701-2713.
${ }^{2}$ J. N. Tan et al., Ardea, Abstracts Arthritis \& Rheumatism, 2013, Vol 65. http://www.blackwellpublishing.com/acrmeeting/abstract.asp?MeetingID=799\&id=109090
${ }^{3}$ J. Miner et al., Annals Rheumatic Disease, 2014, 71(Suppl 3):446.

## Figure 1A

Schematic showing organization of the URAT1(L)GFP construct ( N to C terminal direction).

| URAT1(L) | eGFP | V5 |
| :---: | :---: | :---: |

## Figure 1B

Sequence alignment of the codon optimized URAT1(L)GFP construct with the wild type human URAT1 sequence deposited as NM_144585.

Alignment row 1 is the sequence from accession NM_144585.

Alignment row 2 is the sequence of the construct in the Gateway destination vector pLenti6.3V5/DEST (encoding URAT1(L)GFP) with the nucleotide alignment indicated with NM_144585 above and the nucleotide numbering below.

Alignment row 3 is the amino acid translation with sequence annotation indicated in italics below.


ACAAGTTTGTACAAAAAAGCAGGCTTCGCCACCATGGCCTTCAGCGAGCTGCTGGACCTG

$\square$
attB1-5' URAT1 Initiation codon

GTGGGTGGCCTGGGCAGGTTCCAGGTTCTCCAGACGATGGCTCTGATGGTCTCCATCATG



TGGCTGTGTACCCAGAGCATGCTGGAGAACTTCTCGGCCGCCGTGCCCAGCCACCGCTGC |||||||| ||||||||||||||||| |||||||| ||||||||||||||||| | ||| TGGCTGTGCACCCAGAGCATGCTGGAAAACTTCTCTGCCGCCGTGCCCAGCCACAGATGC



TGGGCACCCCTCCTGGACAACAGCACGGCTCAGGCCAGCATCCTAGGGAGCTTGAGTCCT ||||| || || ||||||||||||| || ||||||||||||| || ||| || ||| TGGGCCCCTCTGCTGGACAACAGCACCGCCCAGGCCAGCATCCTGGGCAGCCTGTCTCCA

 GAGGCCCTCCTGGCTATTTCCATCCCGCCGGGCCCCAACCAGAGGCCCCACCAGTGCCGC |||||||| ||||| || |||||| || |||||||||||||||||||||||||| | GAGGCCCTGCTGGCCATCAGCATCCCCCCTGGCCCCAACCAGAGGCCCCACCAGTGCAGA
$\qquad$
$\qquad$

CGCTTCCGCCAGCCACAGTGGCAGCTCTTGGACCCCAATGCCACGGCCACCAGCTGGAGC || ||||| ||||| |||||||||| |||| ||||| ||||| |||||| ||||| CGGTTCCGGCAGCCTCAGTGGCAGCTGCTGGATCCCAACGCCACCGCCACCTCTTGGAGC
$\qquad$


GAGGCCGACACGGAGCCGTGTGTGGATGGCTGGGTCTATGACCGCAGCATCTTCACCTCC ||||||||||| ||||| |||||||| |||||||| || ||||| |||||||||| | GAGGCCGACACCGAGCCCTGTGTGGACGGCTGGGTGTACGACCGGTCCATCTTCACCAGC



ACAATCGTGGCCAAGTGGAACCTCGTGTGTGACTCTCATGCTCTGAAGCCCATGGCCCAG
|| |||||||||||||||||||| ||||| ||| ||| || ||||||||||||||||| ACCATCGTGGCCAAGTGGAACCTGGTGTGCGACAGTCACGCCCTGAAGCCCATGGCCCAG

$\qquad$

TCCATCTACCTGGCTGGGATTCTGGTGGGAGCTGCTGCGTGCGGCCCTGCCTCAGACAGG
|||||||||||| || |||||||||||||| || || || ||||||||| || || AGCATCTACCTGGCCGGCATTCTGGTGGGAGCCGCCGCTTGTGGCCCTGCCAGCGATAGA



TTTGGGCGCAGGCTGGTGCTAACCTGGAGCTACCTTCAGATGGCTGTGATGGGTACGGCA || || | |||||||||| |||||| |||||| |||||||| |||||||| || || TTCGGCAGACGGCTGGTGCTGACCTGGTCCTACCTGCAGATGGCCGTGATGGGCACCGCC



GTGGCAGGCGTCATGATGAACACGGGCACTCTCCTGATGGAGTGGACGGCGGCACGGGCC ||||| ||||| ||||||||||| ||||| || |||||||| ||||| || || | || GTGGCCGGCGTGATGATGAACACCGGCACCCTGCTGATGGAATGGACCGCCGCCAGAGCC



CGACCCTTGGTGATGACCTTGAACTCTCTGGGCTTCAGCTTCGGCCATGGCCTGACAGCT
 AGACCCCTGGTGATGACCCTGAACAGCCTGGGCTTCAGCTTCGGACATGGCCTCACAGCC



GCAGTGGCCTACGGTGTGCGGGACTGGACACTGCTGCAGCTGGTGGTCTCGGTCCCCTTC || ||||| || || |||||||||||||||||||||||||||||||| || || |||||| GCTGTGGCTTATGGCGTGCGGGACTGGACACTGCTGCAGCTGGTGGTGTCCGTGCCCTTC


TTCCTCTGCTTTTTGTACTCCTGGTGGCTGGCAGAGTCGGCACGATGGCTCCTCACCACA
 TTCCTGTGCTTCCTGTACAGCTGGTGGCTCGCTGAGAGCGCCCGGTGGCTGCTGACCACA ---------+---------+---------+---------+---------+-----------+900


GGCAGGCTGGATTGGGGCCTGCAGGAGCTGTGGAGGGTGGCTGCCATCAACGGAAAGGGG
 GGCAGACTGGACTGGGGCCTGCAGGAACTGTGGCGGGTCGCCGCCATCAATGGCAAGGGC


GCAGTGCAGGACACCCTGACCCCTGAGGTCTTGCTTTCAGCCATGCGGGAGGAGCTGAGC
 GCCGTGCAGGACACCCTGACCCCTGAGGTGCTGCTGAGCGCCATGCGCGAGGAACTGAGC

$\qquad$


ATGGGCCAGCCTCCTGCCAGCCTGGGCACCCTGCTCCGCATGCCCGGACTGCGCTTCCGG
|||||||||||||| |||||||||||||| ||||| | |||||||| ||||| |||||| ATGGGCCAGCCTCCAGCCAGCCTGGGCACACTGCTGAGAATGCCCGGCCTGCGGTTCCGG



ACCTGTATCTCCACGTTGTGCTGGTTCGCCTTTGGCTTCACCTTCTTCGGCCTGGCCCTG ||||| ||| ||| |||| ||||||||||| ||||||||||||||||||||||||| ACCTGCATCAGCACCCTGTGTTGGTTCGCCTTCGGCTTCACCTTCTTCGGCCTGGCCCTG



GACCTGCAGGCCCTGGGCAGCAACATCTTCCTGCTCCAAATGTTCATTGGTGTCGTGGAC
||||| ||||||||||||||||||||||||||||| || |||||||| || || |||||| GACCTCCAGGCCCTGGGCAGCAACATCTTCCTGCTGCAGATGTTCATCGGCGTGGTGGAC


ATCCCAGCCAAGATGGGCGCCCTGCTGCTGCTGAGCCACCTGGGCCGCCGCCCCACGCTG ||||| |||||||||||||||||||||||||| ||||||||| | || || ||| ATCCCCGCCAAGATGGGCGCCCTGCTGCTGCTGTCTCACCTGGGCAGAAGGCCTACCCTG ----------+----------+----------+---------+----------------------1260


GCCGCATCCCTGTTGCTGGCAGGGCTCTGCATTCTGGCCAACACGCTGGTGCCCCACGAA ||||| || ||| ||||||| || || ||||| ||||||||||| ||||||||||||| GCCGCCTCTCTGCTGCTGGCCGGACTGTGCATCCTGGCCAACACCCTGGTGCCCCACGAG



ATGGGGGCTCTGCGCTCAGCCTTGGCCGTGCTGGGGCTGGGCGGGGTGGGGGCTGCCTTC ||||| || ||| | || ||| ||||||| ||||| ||||| || ||||| ||||||||| ATGGGAGCCCTGAGATCTGCCCTGGCCGTCCTGGGACTGGGAGGCGTGGGAGCTGCCTTC

$\qquad$

ACCTGCATCACCATCTACAGCAGCGAGCTCTTCCCCACTGTGCTCAGGATGACGGCAGTG ||||| ||||||||||||||||||||||| |||||||| ||||| ||||||| || ||| ACCTGTATCACCATCTACAGCAGCGAGCTGTTCCCCACCGTGCTGCGGATGACAGCCGTG



GGCTTGGGCCAGATGGCAGCCCGTGGAGGAGCCATCCTGGGGCCTCTGGTCCGGCTGCTG ||| |||| |||||||| ||| | || |||||||||||||| |||||||| || |||||| GGCCTGGGACAGATGGCCGCCAGAGGCGGAGCCATCCTGGGACCTCTGGTGCGCCTGCTG
$\qquad$


GgTGTCCATGGCCCCTGGCTGCCCTTGCTGGTGTATGGGACGGTGCCAGTGCTGAGTGGC || || || || || ||||| || |||||||||| || || ||||||||||| ||| GGAGTGCACGGACCTTGGCTCCCTCTGCTGGTGTACGGCACCGTGCCTGTGCTGTCTGGA



CTGGCCGCACTGCTTCTGCCCGAGACCCAGAGCTTGCCGCTGCCCGACACCATCCAAGAT ||||| || ||||| ||||||||||| |||||| |||| |||||||||||||||||| || CTGGCTGCTCTGCTGCTGCCCGAGACACAGAGCCTGCCCCTGCCCGACACCATCCAGGAC



GTGCAGAACCAGGCAGTAAAGAAGGCAACACATGGCACGCTGGGGAACTCTGTCCTAAAA |||||||||||||| || |||||||| || || ||||| ||||| ||| || || || GTGCAGAACCAGGCCGTGAAGAAGGCCACCCACGGCACCCTGGGCAACAGCGTGCTGAAG



TCCACACAGTTC
||||| ||||||

TCCACCCAGTTCATGGTGTCCAAGGGGGAGGAACTGTTTACCGGCGTGGTGCCCATCCTG


End of URAT1 sequence

Initiation for eGFP

GTGGAACTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAAGGC


GACGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTG


CCTTGGCCCACCCTGGTGACAACCTTCACCTACGGCGTGCAGTGCTTCGCCAGATACCCC
$+1920$


$\qquad$

CGGACCATCTTCTTCAAGGACGACGGCAACTACAAGACCAGAGCCGAAGTGAAGTTCGAG
----------+----------+---------+----------+----------------------2 2040


GgCGATACCCTGGTGAACCGGATCGAGCTGAAGGGCATCGACTTCAAAGAGGACGGCAAT
----------+---------+---------+---------+-----------------------12100


ATCCTGGGCCACAAGCTGGAGTACAACTACAACAGCCACAAGGTGTACATCACCGCCGAC




GTGCAGCTGGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTG
----------+----------+---------+----------+------------------------12280


CCTGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAGGACCCCAACGAGAAGCGG



GACCACATGGTGCTGCTGGAATTCGTGACCGCCGCTGGCATCACACTGGGCATGGACGAG
----------+----------+----------+----------+----------+-----------12400

attB2-3'

CTGTACAAGTACCCAGCTTTCTTGTACAAAGTGGTTGATATCCAGCACAGTGGCGGCCGC
---------+---------+---------+---------+------------------------2460


End of EGFP

TCGAGTCTAGAGGGCCCGCGGTTCGAAGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTC
----------+----------+----------+----------+-----------------------2 2520


V5 EPITOPE

GATTCTACGCGTACCGGTTAGTAATGA
----------+----------+-------2 2547


STOP

Figure 2 IC $_{50}$ plot showing benzbromarone-mediated inhibition of [ $\left.{ }^{14} \mathrm{C}\right]$ uric acid uptake by hURAT1 overexpressing cell line. This plot represents the average percentage inhibition of the concentration responsive data for benzbromarone (over 900 data points per concentration). It should be noted that pharmacological blockade of uptake is equivalent to uptake in parental cell lines lacking human URAT1 expression. Error bars are standard deviation.


## 7. Pharmacokinetic profile of compound 10 i in the rat

All experiments involving animals were conducted in our AAALAC-accredited facilities and were reviewed and approved by the Pfizer Institutional Animal Care and Use Committee.

## Plasma concentration vs time profile of compound 10i following i.v. infusion of a $1 \mathrm{mg} / \mathrm{kg}$ dose over 0.5 hours


8. Proposed Metabolites of compound 10 f Identified in Human, Rat, Dog and Cynomolgus Monkey Liver Microsomes and Hepatocytes


Metabolites of $10 f$ in Human, Rat, Dog and Cynomolgus Monkey Liver Microsomes

|  | Abundance compared to unchanged <br> drug (\%; MS response) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| M\# | $m / z$ | Human | Rat | Dog | Cynomolgus <br> Monkey |
| 10f | 429 | 100 | 100 | 100 | 100 |
| M1 | 294 | 2.0 | 0.4 | $<0.1$ | 0.8 |
| M2 | 591 | ND | ND | ND | ND |
| M3 | 427 | 0.9 | 0.6 | 0.2 | 2 |
| M4 | 605 | ND | ND | ND | ND |


| M5 | 445 | 10.2 | $<0.1$ | ND | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| M6 | 621 | ND | ND | ND | ND |
| M7 | 445 | 3.6 | 3.2 | 2.1 | 10 |
| M8 | 583 | ND | ND | ND | ND |
| M9 | 397 | ND | ND | ND | ND |
| M10 | 454 | ND | ND | ND | ND |

Not Detected (ND)

Metabolites of 10 f Identified in Human, Rat, Dog and Cynomolgus Monkey Hepatocytes

|  | Abundance compared to unchanged <br> drug (\%; MS response) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| M\# | $m / z$ | Human |  |  | Rat |
|  |  | Dog | Cynomolgus <br> Monkey |  |  |
| 10f | 429 | 100 | 100 | 100 | 100 |
| M1 | 294 | 0.7 | 0.1 | ND | 0.6 |
| M2 | 591 | 0.2 | ND | ND | 0.7 |
| M3 | 427 | ND | ND | ND | ND |
| M4 | 605 | 1 | ND | 0.2 | 0.4 |
| M5 | 445 | ND | ND | ND | ND |
| M6 | 621 | ND | 1.3 | ND | 0.4 |
| M7 | 445 | $<0.1$ | ND | ND | ND |
| M8 | 583 | 2.7 | ND | 0.1 | 19 |
| M9 | 397 | 0.9 | ND | ND | 5 |
| M10 | 454 | 0.4 | ND | ND | 2 |
| Not Detected (ND) |  |  |  |  |  |

## 9. Proposed Metabolites of compound 10i Identified in Human, Rat, Dog and Cynomolgus

Monkey Liver Microsomes and Hepatocytes


Metabolites of 10i Identified in Human, Rat, Dog and Cynomolgus Monkey Liver Microsomes

|  | M\# | $m / z$ | Human | Rat | Dog |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 i}$ | 434 | +++ | +++ | +++ | Cynomolgus <br> Monkey |
| M1 | 610 | ND | ND | ND | ND |
| M2 | 610 | ND | ND | ND | ND |
| M3 | 450 | t | t | t | + |
| M4 | 448 | + | + | t | t |
| +++ | Observed as a major peak in the UV profile |  |  |  |  |
| ++ | Observed as a minor peak in the UV profile <br> Observed as a trace peak in the UV profile |  |  |  |  |
| + |  |  |  |  |  |
| tetected only by mass spectrometry <br> ND |  |  |  |  |  |

Metabolites of 10 i Identified in Human, Rat, Dog and Cynomolgus Monkey Hepatocytes

|  | $\mathrm{M} \#$ | $m / z$ | Human | Rat | Dog |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 i}$ | 434 | +++ | +++ | +++ | Cynomolgus <br> Monkey |
| M1 | 610 | t | ND | ND | +++ |
| M2 | 610 | t | +++ | ND | ++ |
| M3 | 450 | ND | ND | ND | ND |
| M4 | 448 | ++ | + | t | ++ |
| +++ | Observed as a major peak in the UV profile <br> Observed as a minor peak in the UV profile |  |  |  |  |
| + | Observed as a trace peak in the UV profile |  |  |  |  |
| t |  |  |  |  |  |
| ND | Detected only by mass spectrometry <br> Not Detected |  |  |  |  |


[^0]:    Detection: 215 nm APCI (+) 175-2000Daltons

    Flow: $0.750 \mathrm{~mL} / \mathrm{min}$

