Electronic Supporting Information

Design, synthesis and P-gp induction activity of aryl phosphonate esters: Identification of tetraethyl-2phenylethene-1,1-diyldiphosphonate as an orally bioavailable P-gp inducer[‡]

Sudhakar Manda,^{a,b} Abubakar Wani,^c Sonali S. Bharate,^d Ram A. Vishwakarma,^{a,b} Ajay Kumar^{c,*} and Sandip B. Bharate^{a,b,*}

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu-180001, India

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^cCancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^dPreformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

*Corresponding Author E-mail: <u>sbharate@iiim.ac.in</u> (SBB); <u>ajaykmahajan@hotmail.com</u> (AK), Fax: +91-191-2586333; Tel: +91-191-2585006.

Contents

Page no.

S1 .	NMR spectra scans: ¹ H, ¹³ C, DEPT-135 and ³¹ P NMR of all compounds	S2
S2.	HPLC spectra scans of all compounds	- S57
S3 .	Experimental procedures and spectral data	- S85
S4 .	References associated with ESI	- S99

S1. <u>NMR SPECTRA SCANS</u>

1. ¹H, ¹³C, DEPT135 and ³¹PNMR spectra of Tetraethyl 2-(3, 5-di-t-butyl-4hydroxyphenyl)ethene-1,1 diyldiphosphonate (6a)

Page S3

- Value D:/ desktop FID/ 2012/ Oct-2012/ Oct05-Oct05-mcd-2a SM-190 1 1 1 3 8 F 1 Para Data F 8.31 8.11 8.11 8.11 -7.77 uct05-mcd-2a/ 22/ fid TRE Oct05-mcd-2a SM-190 3 Comr 4 Origin 0 Ò−Þ=O 5 Owner 6 Site 7 Spectro 8 Author 9 Solvent O } Ć CDCB 10 Temp 300.0 11 Pulse zg30 16 12 ÓН 161 13 Re 0.5000 13.1000 2.7263 2012-10-05T 16:47:35 2012-10-05T 16:47:38 400.13 12019.2
 Width

 21 Lowest
 -3103.7

 Frequency

 22 Nucleus
 1H

 23 Acquired Size
 32768

 24 Spectral Size
 65536
 -3103.2 从 Ш ч ч 18.45 12.33 ∄ 12.89 ∐ ÷ н Ч 8 2.26 .19 2.18 0.0 10.0 9.5 9.0 8.5 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 8.0 c13-sudhaka SM-190 SM-191 V / ~135.50 /130.05 /125.91 /125.69 -117.32 77.33 77.01 71.17 71.11 71.10 71.06 34.55 30.30 24.13 24.13 24.08 24.06 24.01 23.62 23.62 Parameter Value C:/ Users/ s/ Desktop/ 25-oct-mcd-2a/ c13-Data File Name sudhakar/ 40/ fid 2 Title c13-sudhaka 3 Comm 4 Origin SM-190 Bruker BloSpin GmbH 5 Owne 6 Site IIIM 0 =0 7 Spectro O spect 8 Author 9 Solvent CDCB 10 Temperat 300.0 Ć 11 Pulse Sequence zgpg30 12 Number of Scans 1300 13 Receiver Gain 128 ÓН 14 Relaxation Delay 1.0000 15 Pulse Width 9,2000 1.2976 16 Acquisition Time 17 Acquisition Date 18 Modification Date 2013-10-25T1 5:47:05 2013-10-25T1 6:26:14 19 Spectrometer Frequency 100.61 20 Spectral Width 25252.5 21 Lowest Frequency 22 Nucleus -2565.5 13C 23 Acquired Size 32768 24 Spectral Size 65536 0 90 80 f1 (ppm) 10 170 160 150 140 130 120 110 100 70 60 50 40 30 20
- 2. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraisopropyl 2-(3, 5-di-t-Butyl 4-hydroxy phenyl)ethene-1,1-diyldiphosphonate (6b)

Page S4

3. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraethyl 2-phenylethene-1,1diyldiphosphonate (6c)

Page S6

Page S7

4. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraisopropyl-2-phenylethene-1,1diyldiphosphonate (6d)

Page S8

5. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraethyl 2-(2-nitrophenyl)ethene-1,1diyldiphosphonate (6e)

Page S10

6. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraisopropyl,2-(3-bromophenyl)ethane-1,1-diyldiphosphonate (6f)

Page S12

Page S13

7. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraisopropyl2-(4-N,Ndimethylaminophenyl)ethene-1,1-diyldiphosphonate (6g)

Page S14

Page S15

8. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraethyl2-(3,5dimethoxyphenyl)ethene-1,1 diyldiphosphonate (6h)

Page S16

Page S17

9. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of Tetraisopropyl2-(3,5dimethoxyphenyl)ethene-1,1 diyldiphosphonate (6i)

Page S18

Page S19

Page S20

Page S21

Page S22

Page S25

13. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraethyl2-(5-nitrofuran-2-yl)ethene-1,1diyldiphosphonate (6m)

Page S26

Page S27

14. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraisoproyl2-(5-nitrofuran-2-yl)ethene-1,1 diyldiphosphonate (6n)

Page S28

Page S29

15. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraisopropyl2-(benzo[d][1,3]dioxol-5yl)ethene-1,1-diyldiphosphonate (60)

Page S30

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 f1 (ppm)

16. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraethyl 2-(naphthalen-1-yl)ethene-1,1diyldiphosphonate (6p)

Page S32

Page S33

17. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraisopropyl,2-(naphthalen-1-yl)ethene-1,1 diyldiphosphonate (6q)

18. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraisopropyl2-(quinol-5-yl)ethene-1,1diyldiphosphonate (6r)

Page S36

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

19. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of tetraethyl2-(anthracene-10-yl)ethene-1,1diyldiphosphonate (6s)

Page S38

Page S39

20. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of (E)-diethyl 4-chlorostyrylphosphonate (7a)

Page S40

Page S41

21. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of (E)-diethyl 3, 5-difluoro styrylphosphonate (7b)

Page S43

Page S44

Page S45

Page S46

24. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of diethyl 2-phenylethynylphosphonate (8a)

Page S47

Page S48

¹³C, ³¹P 25. ¹H, DEPT135 NMR and spectra of

Page S49

36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 f1(ppm)

26. ¹H, ¹³C, DEPT135 and ³¹P NMR spectra of diethyl2-(3-(trifluoromethyl)pheny)lethynylphosphonate (8c)

Page S51

Page S52

Page S53

Page S54

Page S55

Page S56

<u>S2.</u> HPLC chromatograms

HPLC analysis was done on Shimadzu HPLC system (model: SCL-10AVP) equipped with a PDA detector (model: RID-10A) using Inertsil RP-18(E-Merck, 5um, 4.0×250 mm) column. Mobile phase used was Methanol: water (70: 30) isocratic elution at flow rate of 0.8 ml/min.

1. HPLC spectra of tetraethyl 2-(3, 5-di-t-butyl-4-hydroxyphenyl)ethene-1,1 diyldiphosphonate (6a)

2. HPLC spectra of tetraisopropyl 2-(3, 5-di-t-Butyl 4-hydroxy phenyl)ethene-1,1diyldiphosphonate (6b)

3. HPLC spectra of tetraethyl 2-phenylethene-1,1-diyldiphosphonate (6c)

Page S58

INSTRUMENTATION DIVISION, IIIM JAMMU Page 1 of 1 Shimadzu CLASS-VP V6.14 SP1 Area % Report Method Name: C:\HPLC\METHOD\nitin.met Sample ID: SM171 Injection vial: 27 C:\CLASS-VP\Data\13-06-13SM-Rep10 Data Name: **Injection Volume: 10 Rajinder Gupta** User: 6/14/2013 12:19:58 AM Acquired: 6/14/2013 12:37:57 PM Printed: Sample Description: MeOH (B), Water (A), Column RP-18 (E-Merck, 5um, 4.0 x 250 mm), Column temp. 30 degree C, Flow rate 0.8 ml/min. Time 0.01 20 30 35 40 45 B(%) 70 70 100 100 70 70

Pk#	Retention Time	Area	Area %	Height	Height %
1	3.093	16727	0.166	1638	0.523
2	8.320	144175	1.431	5470	1.746
3	30,720	9875476	98.020	302630	96.574
4	38.709	10800	0.107	1146	0.366
5	39.104	27787	0.276	2483	0.792
Totals					
		10074965	100.000	313367	100.000

4. HPLC spectra of tetraisopropyl-2-phenylethene-1,1-diyldiphosphonate (6d)

5. HPLC spectra of tetraethyl 2-(2-nitrophenyl)ethene-1,1-diyldiphosphonate (6e)

6. HPLC spectra of tetraisopropyl,2-(3-bromophenyl)ethane-1,1-diyldiphosphonate (6f)

INSTRUMENTATION DIVISION, IIIM JAMMU

Shimadzu CLASS-VP V6.14 SP1 Area % Report Page 1 of 1 Method Name: C:\HPLC\METHOD\nitin.met Sample ID: SM197 Data Name: C:\CLASS-VP\Data\17-06-13SM-Rep10 Injection vial: 7 **Injection Volume: 10** User: Niteen Narkhede Acquired: 6/18/2013 1:11:36 AM Printed: 6/18/2013 10:25:27 AM Sample Description: MeOH (B), Water (A), Column RP-18 (E-Merck, 5um, 4.0 x 250 mm), Column temp. 30 degree C, Flow rate 0.8 ml/min. Time 0.01 20 30 35 40 45 70 100 100 70 70 B(%) 70

]	Pk #	Retention Time	Area	Area %	Height	Height %
÷.	1	3.125	15961	0.649	1555	1.815
	2	30.827	2403052	97.784	80405	93.825
**	3	38.880	11382	0.463	1224	1.428
	4	39.275	27108	1.103	2513	2.932
To	otals					
			2457503	100.000	85697	100.000

7. HPLC spectra of tetraisopropyl-2-(4-N,N-dimethylaminophenyl)ethene-1,1diyldiphosphonate (6g)

8. HPLC spectra of tetraethyl2-(3,5-dimethoxyphenyl)ethene-1,1 diyldiphosphonate (6h)

9. HPLC spectra of tetraisopropyl-2-(3,5-dimethoxyphenyl)ethene-1,1 diyldiphosphonate (6i)

10. HPLC spectra of tetraisopropyl2-(3-methoxy4-fluorophenyl)ethene-1,1diyldiphosphonate (6j)

11. HPLC spectra of tetraethyl- 2(2,3,5-trimethoxyphenyl)ethane-1,1 diyldiphosphonate (6k)

12. HPLC spectra of tetraisopropyl 2-(2,4,5-trimethoxyphenyl)ethene-1,1 diyldiphosphonate (6l)

13. HPLC spectra of tetraethyl2-(5-nitrofuran-2-yl)ethene-1,1-diyldiphosphonate (6m)

14. HPLC spectra of tetraisoproyl2-(5-nitrofuran-2-yl)ethene-1,1 diyldiphosphonate (6n)

15. HPLC spectra of tetraisopropyl2-(benzo[d][1,3]dioxol-5-yl)ethene-1,1diyldiphosphonate (60)

16. HPLC spectra of tetraethyl 2-(naphthalen-1-yl)ethene-1,1-diyldiphosphonate (6p)

17. HPLC spectra of tetraisopropyl,2-(naphthalen-1-yl)ethene-1,1 diyldiphosphonate (6q)

himadzu C (ethod Name ata Name: ser: cquired: rinted: ample Descr te 0.8 ml/mi	LASS-VP V6.14 SJ e: C:\HPLC\METH C:\CLASS-VP\Da Niteen Narkhede 6/18/2013 12:25:1 6/18/2013 10:25:1 iption: MeOH (B),	P1 Area % OD\nitin.met nta\17-06-13SM-Re 2 AM 2 AM Water (A), Column	Report Sa p9 RP-18 (E-Merck,	Pa mple ID: Injection Injection 5um, 4.0 x 250 r	nge 1 of 1 SM191 vial: 6 Volume: 10 nm), Column te	np. 30 degre	e C, 1
me 0.01 2 (%) 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 70					
	100 100 10						
	54 nm, 8 nm 191						
Retentio	on Time						-
		0-P=0	$\langle $				t
-		P					ł
		ő í		11			
			\	1			t i
							ł
36	14					R.	1
3.1.	8.7					07.	t
- d				EL.		4	F
				31			-
0	5 10	15 2	0 05		· · · · · · ·		
		10 2	Minutes	30	35	40	45
254 nm, 8 r	ım						
Pk#	Retention Time	Area	Area %	Height	Height 0/		
1	3.136	16492	0.381	1549	0.871		
2	8.747	48235	1.114	1910	1 074		
3	31.531	4224193	97.593	170576	95,906		
4	38.880	12453	0.288	1290	0.725		
5	39.275	27021	0.624	2532	1.424		
5							
Totals							

18. HPLC spectra of tetraisopropyl2-(quinol-5-yl)ethene-1,1-diyldiphosphonate (6r)

19. HPLC spectra of tetraethyl2-(anthracene-10-yl)ethene-1,1-diyldiphosphonate (6s)

INSTRUMENTATION DIVISION, IIIM JAMMU

Shimadzu CLASS-VP V6.14 SP1 Area % Report Page 1 of 1 Method Name: C:\HPLC\METHOD\nitin.met Sample ID: SM187 Injection vial: 28 Data Name: C:\CLASS-VP\Data\13-06-13SM-Rep11 User: **Rajinder Gupta Injection Volume: 10** Acquired: 6/14/2013 1:06:23 AM Printed: 6/14/2013 12:38:13 PM Sample Description: MeOH (B), Water (A), Column RP-18 (E-Merck, 5um, 4.0 x 250 mm), Column temp. 30 degree C, Flow rate 0.8 ml/min. Time0.012030354045B(%)70701001007070

PL #	Potention Time	4	A mag 8/	Height	Height 0/
1 K //	Retention Time	Alca	Alca 70	rieight	neight 70
1	2.720	51242	0.194	2334	0.489
2	3.104	19048	0.072	1652	0.346
3	5.323	311208	1.177	15184	3.184
4	10.645	93236	0.353	2942	0.617
5	19.957	25901528	97.994	451345	94.630
6	32.800	28236	0.107	1038	0.218
7	39.115	27227	0.103	2463	0.516
Totals					
		26431725	100.000	476958	100.000

20. HPLC spectra of (E)-diethyl 4-chlorostyrylphosphonate (7a)

21. HPLC spectra of (E)-diethyl 3, 5-difluoro styrylphosphonate (7b)

22. HPLC spectra of (E)-diethyl 3-bromo 4-methoxystyrylphosphonate (7c)

INSTRUMENTATION DIVISION, IIIM JAMMU Page 1 of 1 Shimadzu CLASS-VP V6.14 SP1 Area % Report Method Name: C:\HPLC\METHOD\nitin.met Sample ID: SM178 Injection vial: 3 Data Name: C:\CLASS-VP\Data\17-06-13SM-Rep5 User: Niteen Narkhede **Injection Volume: 10** Acquired: 6/17/2013 9:19:42 PM Printed: 6/18/2013 10:23:55 AM Sample Description: MeOH (B), Water (A), Column RP-18 (E-Merck, Sum, 4.0 x 250 mm), Column temp. 30 degree C, Flow rate 0.8 ml/min. Time 0.01 20 30 35 40 45 B(%) 70 70 100 100 70 70

Pk#	Retention Time	Area	Area %	Height	Height %
1	3.115	13992	0.243	1464	0.793
2	5.728	60271	1.047	3115	1.686
3 1	6.560	45848	0.796	1630	0.882
4	8.864	55992	0.972	2633	1.425
5	9.397	28095	0.488	1230	0.666
6	11.147	5491504	95.376	168909	91.442
7	35.157	21333	0.371	1861	1.007
8	38.901	14883	0.258	1449	0.784
9	39.328	25852	0.449	2426	1.313
Totals					
		5757770	100.000	184717	100.0

23. HPLC spectra of (E)-diethyl 3-bromo-4-fluorostyrylphosphonate (7d)

24. HPLC spectra of diethyl 2-phenylethynylphosphonate (8a)

himadzu C ethod Nam ata Name: ser: cquired: rinted: imple Desci te 0.8 ml/mi me 0.01	CLASS-VP V6.14 SP1 te: C:\HPLC\METHO C:\CLASS-VP\Data Niteen Narkhede 6/17/2013 7:00:29 P 6/18/2013 10:22:05 ription: MeOH (B), W in. 20 30 35 40 45	Area % R Donitin.met MAN M AM Yater (A), Column R	2 P-18 (E-Merck, 5	inple ID: Injection Injection Injection	Page 1 of 1 SM158 n vial: 0 n Volume: 10 mm), Column temp.	30 degree C, Fl
(%) 70	70 100 100 70 70)				
2:	254 nm, 8 nm					E
17	7-06-13SM-Rep2					-e
Retent	tion Time		C			-
		K	>P	OEt		E
]			ć	DEt		E
-				_		-
			0		me	1
145			.15.		333	-
~	248		21		500 200	
	12		1			
1						, , , , , , [
0	5 10	15 20	25	30	35	40 45
2: 254 nm, 8	nm		Arres 8/	Height	Haight %	
PK#	2 145	21054	Area %	Height	Height %	
1	11 648	21060848	99 138	629510	98 771	
2	21.152	123279	0.580	2555	0.401	
2		10284	0.048	1133	0.178	
2 3 4	38.933	10204				
2 3 4 5	38.933 39.392	28410	0.134	2454	0.385	
2 3 4 5 Totals	38.933 39.392	28410	.0.134	2454	0.385	

25. HPLC spectra of diethyl-2-(4-(trifluoromethyl)pheny)lethynylphosphonate (8b)

26.HPLC spectra of diethyl2-(3-(trifluoromethyl)pheny)lethynylphosphonate (8c)

27. HPLC spectra of diethyl phenyl(phenylamino)methylphosphonate (9a)

28. HPLC spectra of diethyl (4-chlorophenyl)(phenylamino)methylphosphonate (9b)

S3. EXPERIMENTAL PROCEDURES AND SPECTRAL DATA

General. All chemicals were obtained from Sigma-Aldrich Company and used as received. ¹H, ¹³C and DEPT NMR spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 125 MHz or 100 MHz: chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl₃, 77.16 ppm). ESI-MS and HRMS spectra were recorded on Agilent 1100 LC-Q-TOF and HRMS-6540-UHD machines. IR spectra were recorded on Perkin-Elmer IR spectrophotometer. Melting points were recorded on digital melting point apparatus.

General procedure for preparation of alkylidne dphosphonate esters 6a-s and 7a-d: A flamedried 25 ml round bottom flask with magnetic stir bar was charged with TiCl₄ (10 mmol) and 0.5 ml CCl₄ at 0 °C. 5 ml of dry THF was added dropwise to the flask and a bright yellow precipitate formed, and then commercially available different aldehydes **10a-s** (0.1g, 5 mmol) and diphosphonate ester **11a-b** (5 mmol) were added. A solution of 0.5 ml 4-methylmorpholine in 3.0 ml dry THF was then added dropwise to the stirring mixture over 12h. The reaction was allowed to warm to room temperature and stirred over night. The reaction was quenched with water and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. Concentration in *vacuo* followed by preparative thin-layer chromatography provided the corresponding alkylidene bisphosphonate **6a-s** and **7a-d** 50-65% yield.

Tetraethyl-2-(3,5-di-t-butyl-4-hydroxyphenyl)ethene-1,1 diyldiphosphonate (6a). Yellow oil; yield 60%; HPLC: $t_{\rm R} = 29.03$ min (95% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.23 (dd, $J_1 = 28$

Hz, $J_2 = 48$ Hz, 1H), 7.76 (s, 2H), 4.21-4.16 (m, 4H), 4.10-4.04 (m, 4H), 1.45 (s, 18H), 1.37 (t, J = 8 Hz, 6H), 1.18 (t, J = 8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.91, 162.88, 157.03, 135.59, 129.87, 125.72, 125.64, 125.51, 125.43, 62.46, 62.41, 62.23, 62.17, 53.42, 34.53, 30.26, 16.39, 16.33, 16.12, 16.04; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 19.58-19.26 (d, J = 51.83 Hz), 13.62-13.30 (d, J = 51.83 Hz); IR (CHCl₃): v_{max} 3436, 2957, 2927, 2871, 1616, 1596, 1558, 1424, 1391, 1242, 1162, 1025 cm⁻¹; ESI-MS: m/z 505 [M+1]⁺; HRMS: m/z 505.2468 calcd for C₂₇H₄₃O₇P₂+H⁺ (505.2478).

Tetraisopropyl-2-(3, 5-di-t-Butyl 4-hydroxy phenyl)ethene-1,1-diyldiphosphonate (6b). Yellow oil; yield 55%; HPLC: $t_{\rm R}$ = 35..05 min (93.5% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.21 (dd, J_1 = 28 Hz, J_2 = 48 Hz, 1H), 7.77 (s, 2H), 4.82-4.75 (m, 2H), 4.72-4.64 (m, 2H), 1.45 (s, 18H), 1.40-1.35 (m, 12H), 1.25-1.16 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 161.12, 161.09, 156.69, 135.50, 130.05, 125.91, 125.69, 117.32, 71.17, 71.11, 71.06, 71.00, 34.55, 30.30, 24.13, 24.08, 24.06, 24.01, 23.62, 23.57; 31P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 17.32-17.00 (d, J = 51.83 Hz), 10.80-10.48 (d, J = 51.83 Hz);IR (CHCl₃): v_{max} 3436. 2976, 2874, 1557, 1425, 1385, 1242, 1141, 1106, 1013 cm-1; ESI-MS: m/z 561 [M+1]⁺; HRMS: m/z 561.3100 calcd for C₂₈H₅₁O₇P₂+H⁺ (561.3104).

Tetraethyl-2-phenylethene-1,1-diyldiphosphonate (*6c*). Yellow oil; yield 60%; HPLC: $t_{\rm R} = 30.72$ min (96.6% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.32 (dd, $J_I = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.76-7.73 (m, 2H), 7.41-7.38 (m, 3H), 4.24-419 (m, 4H), 4.06-4.00 (m, 4H), 1.39 (t, J = 4 Hz, 6H), 1.16 (t, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 161.49, 134.62, 130.49, 130.27, 128.01, 122.46, 120.77, 119.12, 62.74, 62.69, 62.49, 62.43, 16.31, 16.24, 15.99, 15.92; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz) δ 16.21-15.88 (d, J = 53.45 Hz), 11.85-11.52 (d, J = 53.45 Hz); IR (CHCl₃): v_{max} 3449, 2982, 2929, 2861, 1727, 1586, 1567, 1445, 1392, 1368, 1248, 1097, 1026 cm⁻¹; ESI-MS: m/z 399.1 [M+Na]⁺; HRMS: m/z 377.1286 cald for C₁₆H₂₆O₆P₂+H⁺ (377.12046).

Tetraisopropyl-2-phenylethene-1,1-diyldiphosphonate (*6d*). Yellow oil; yield 54%; HPLC: $t_{\rm R}$ = 17.56 min (93% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.21 (dd, J_1 = 28 Hz, J_2 = 48 Hz, 1H), 7.83-7.81 (m, 2H), 7.40-7.37 (m, 3H), 4.86-4.78 (m, 2H), 4.72-4.64 (m, 2H), 1.41-1.34 (m, 12H), 1.26-1.17 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.07, 134.93, 134.71, 130.85, 130.32, 129.98, 127.98, 71.61, 71.55, 71.47, 71.40, 24.14, 24.10, 24.03, 24.00, 23.95, 23.55, 23.50; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 15.28-14.96 (d, J = 51.83 Hz), 9.82-9.51 (d, J = 50.21 Hz); IR (CHCl₃): v_{max} 3436, 2979, 2932, 2079, 1634, 1586, 1450, 1385, 1242, 1106 cm⁻¹; ESI-MS: m/z 433 [M+1]⁺; HRMS: m/z 433.1905 calcd for C₂₀H₃₅O₆P₂+H⁺ (433.1903).

Tetraethyl-2-(2-nitrophenyl)ethene-1,1-diyldiphosphonate (6e). Yellow oil; yield 50%; HPLC: $t_{\rm R}$ = 6.27 min (92.1% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8. (dd, J_1 = 28 Hz, J_2 = 48 Hz, 1H), 8.24-8.22 (m, 1H), 7.70-7.68 (m, 1H), 7.58-7.55 (m, 2H), 4.28-4.24 (m, 4H), 3.96-3.90 (m, 4H), 1.43-1.40 (m, 6H), 1.14-1.11 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.04, 145.39, 133.59, 130.64, 129.74, 124.39, 62.99, 62.95, 62.48, 62.45, 15.39, 16.33, 16.12,, 16.07; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.92-14.62 (d, J = 48.59 Hz), 11.10-10.80 (d, J = 48.59 Hz); IR (CHCl₃): v_{max} 3467, 2983, 2928, 2855, 1734, 1589, 1570, 1525, 1442, 1392, 1345, 1248, 1163, 1023 cm⁻¹; ESI-MS: m/z 443.94 [M+Na]⁺; HRMS: m/z 444.0954 calcd for C₁₆H₂₅NO₈P₂+Na⁺ (444.0947).

Tetraisopropyl-2-(3-bromophenyl)ethane-1,1-diyldiphosphonate (*6f*). Yellow oil; yield 58%; HPLC: $t_{\rm R} = 30.82 \text{ min}$ (97.8% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.19 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.97 (s, 1H), 7.66 (d, J = 8 Hz, 1H), 7.50 (d, J = 8Hz, 1H), 7.27-7.23 (m, 1H), 4.74-4.66 (m, 2H), 4.74-4.66 (m, 2H), 1.41-1.36 (m, 12H), 1.26-1.18 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 157.62, 137.08, 136.94, 133.05, 132.81, 129.44, 129.00, 121.96, 71.75, 71.69, 71.54, 71.47, 29.68, 24.11, 24.06, 24.05, 24.01, 23.97, 23.92, 23.59, 23.53; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.24-13.93 (d, *J* = 50.21 Hz), 9.12-8.81 (d, *J* = 50.21 Hz); IR (CHCl₃): v_{max} 3436, 2978, 2930, 1581, 1385, 1242, 1105 cm-1; ESI-MS: *m*/*z* 534 [M+Na]⁺; HRMS: *m*/*z* 511.1003 calcd for C₂₀H₃₄BrO₆P₂+H⁺ (511.1008).

Tetraisopropyl-2-(4-N,N-dimethylaminophenyl)ethene-1,1-diyldiphosphonate (*6g*). Yellow oil; yield 52%; HPLC: $t_{\rm R} = 21.17$ min (94.9% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.14 (dd, J_1 = 28 Hz, $J_2 = 48$ Hz, 1H), 7.92-7.89 (d, J = 12 Hz, 2H), 6.64 (d, J = 8 Hz, 2H), 4.81-4.69 (m, 4H), 3.01 (s, 6H), 1.39-1.34 (m, 12H), 1.34-1.24 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.68, 152.16, 135.0, 110.73, 71.28, 71.03, 70.99, 70.95, 39.94, 24.09, 24.05, 24.03, 23.98, 23.88, 23.65, 23.61; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 18.46-18.14 (d, J = 51.83 Hz), 12.56-12.24 (d, J =51.83 Hz); IR (CHCl₃): v_{max} 3467, 2978, 2931, 2874, 1731, 1607, 1519, 1436 1384, 1373, 1242, 1196, 1141, 1107 cm-1; ESI-MS: m/z 476.1 [M+1]⁺; HRMS: m/z 476.2317 calcd for C₂₂H₄₀NO₆P₂+H+ (476.2325).

Tetraethyl-2-(3,5dimethoxyphenyl)ethene-1,1 diyldiphosphonate (6h). Yellow oil; yield 58%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.25 (dd, $J_1 = 32$ Hz, $J_2 = 48$ Hz, 1H), 6.99 (d, J = 8 Hz, 2H), 6.52 (s, 1H), 4.25-4.18 (m, 4H), 4.08-4.03 (m, 4H), 3.81 (s, 6H), 1.39 (t, J = 8 Hz, 6H), 1.19 (t, J = 8 Hz, 6H); ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz) δ 19.44 (s); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 161.34, 160.24, 136.29, 122.89, 121.20, 119.56, 107.86, 103.45, 62.65, 62.59, 62.46, 62.40, 55.42, 16.28, 16.22, 16.03, 15.96;; IR (CHCl₃): v_{max} 3436, 2981, 2928, 1586, 1568, 1445, 1391, 1248, 1163, 1025 cm⁻¹; ESI-MS: m/z 437.00 [M+1]⁺; HRMS: m/z 459.1308 calcd for C₁₈H₃₀O₈P₂+Na⁺ (459.1308).

Tetraisopropyl-2-(3,5-dimethoxyphenyl)ethene-1,1 diyldiphosphonat (6i). Yellow oil; yield 55%; HPLC: $t_{\rm R} = 19.39 \text{ min } (99.2\% \text{ purity}); {}^{1}\text{H NMR} (400 \text{ MHz, CDCl}_{3}, \text{ppm}): \delta 8.14 (dd, <math>J_{1} = 32 \text{ Hz}, J_{2}$

= 48 Hz, 1H), 6.98 (s, 2H), 6.43 (s, 1H), 4.77-4.69 (m, 2H), 4.63-4.58 (m, 2H), 3.74 (s, 6H), 1.33-1.26 (m, 12H), 1.18-1.11 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.26, 159.92, 108.50, 108.33, 103.36, 71.55, 71.50, 71.40, 71.35, 55.57, 24.15, 24.10, 24.07, 24.01, 23.97, 23.61, 23.57; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 15.34-15.03 (d, J = 50.21 Hz), 9.81-9.50 (d, J = 50.21Hz); IR (CHCl₃): v_{max} 3436, 2978, 2926, 2852, 1738, 1595, 1573, 1458, 1385, 1307, 1241, 1206, 1156, 1106, 1065 cm⁻¹; ESI-MS: m/z 493.1[M+1]⁺; HRMS: m/z 493.2104 calcd for C₂₂H₃₉O₈P₂+H⁺ (493.2114).

Tetraisopropyl-2-(4-fluoro3-methoxyphenyl)ethene-1,1diyldiphosphonat (6j). Yellow oil; yield 59%; HPLC: $t_{\rm R} = 15.57$ min (96.8% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.08 (dd, $J_1 = 32$ Hz, $J_2 = 48$ Hz, 1H), 7.82-7.79 (m, 1H), 7.52 (d, J = 8.0 Hz, 1H), 6.90-6.86 (m, 1H), 4.74-4.62 (m, 4H), 1.36-1.28 (m, 12H), 1.20-1.18 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 158.28, 152.70, 150.30, 149.89, 129.36, 119.04, 118.85, 112.23, 71.54, 71.47, 71.46, 71.39, 56.20, 24.12, 24.08, 24.03, 23.99, 23.63, 23.58; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 15.72-15.42 (d, J = 48.59 Hz), 10.14-9.83 (d, J = 50.21 Hz); IR (CHCl₃): v_{max} 3436, 2978, 2928, 1668, 1615, 1511, 1443, 1385, 1285, 1138, 1105, 1017 cm⁻¹; ESI-MS: m/z 481 [M+1]⁺; HRMS: m/z 481.1908 calcd for C₂₁H₃₆FO₇P₂+H⁺ (481.1914).

Tetraethyl-2(2,3,5-trimethoxyphenyl)ethane-1,1 diyldiphosphonate (6k). Yellow oil; yield 64%; HPLC: $t_{\rm R} = 5.23$ min (95.6% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.54 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.96 (s, 1H), 6.45 (s, 1H), 4.23-4.14 (m, 6H), 4.09-4.02 (m, 2H), 3.94-3.86 (s, 9H), 1.39-1.18 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.98, 154.36, 152.93, 151.42, 142.36, 114.45, 95.39, 62.51, 62.47, 62.40, 62.35, 56.43, 56.34, 56.02, 16.36, 16.31, 16.17; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 19.22-18.89 (d, J = 53.45 Hz), 14.42-14.09 (d, J = 53.45 Hz); IR (CHCl₃): v_{max} 3436, 2927, 1612, 1579, 1508, 1466, 1440, 1335, 1282, 1221, 1128, 1025 cm⁻¹; MS: *m/z* 467.20 [M+1]⁺; HRMS: *m/z* 467.1596 calcd for C₁₉H₃₃O₉P₂+H⁺ (467.1594).

Tetraisopropyl-2-(2,4,5-trimethoxyphenyl)ethene-1,1 diyldiphosphonate (6l). Yellow oil; yield 58%; HPLC: $t_{\rm R} = 11.60$ min (98.3% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.48 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.98 (s, 1H), 6.38 (s, 1H), 4.75-4.60 (m, 4H), 3.86 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 1.33-1.29 (m, 12H), 1.15-1.13 (m,12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.38, 154.07, 154.03, 152.60, 142.37, 128.70, 115.04, 95.62, 71.19, 71.13, 56.57, 56.43, 55.98, 29.67, 24.16, 24.12, 24.06, 23.94, 23.89, 23.65, 23.60; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 17.11-16.77 (d, J = 55.07 Hz), 11.81-11.48 (d, J = 53.45 Hz); IR (CHCl₃): v_{max} 3435, 2979, 2931, 1612, 1579, 1508, 1466, 1374, 1243, 1221, 1141 cm⁻¹; ESI-MS: m/z 523.1 [M+1]⁺; HRMS: m/z 523.2222 calcd for C₂₃H₄₁O₉P₂+H⁺ (523.2220).

Tetraethyl-2-(4-nitrofuran-2-yl)ethene-1,1-diyldiphosphonate (6m). Yellow oil; yield: 59%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.98 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.81 (d, J = 4Hz, 1H), 7.38 (d, J = 4 Hz, 1H), 4.25-4.18 (m, 8H), 1.41-1.33 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.41, 150.75, 150.46, 142.54, 120.55, 112.73, 63.14, 63.08, 16.31, 16.24, 16.21, 16.15; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.96-14.67 (d, J = 46.97 Hz), 11.11-10.81 (d, J = 48.59 Hz); IR (CHCl₃): v_{max} 3436, 2923, 1619, 1418, 1020, cm-1; ESI-MS: m/z 412 [M+1]+; HRMS: m/z 412.0921 calcd for C₁₄H₂₄NO₉P₂+H⁺ (412.0920).

Tetraisopropyl-2-(4-nitrofuran-2-yl)ethene-1,1 diyldiphosphonate (6n). Yellow oil; yield: 57%; HPLC: $t_{\rm R} = 12.24$ min (98.3% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.98 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.85 (d, J = 4Hz, 1H), 7.35-7.34 (m, 1H), 4.83-4.76 (m, 4H), 1.40-1.24 (m, 24H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 149.85, 148.62, 139.02, 124.43, 117.87, 110.35, 69.74, 69.71, 69.69, 69.67, 21.65, 21.61, 21.58, 21.55, 21.51, 21.29, 21.25; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 12.70-12.45 (d, J = 40.49 Hz), 7.62-7.37 (d, J = 40.49 Hz); IR (CHCl₃): v_{max} 3436, 2980, 2928, 1591, 1530, 1454, 1386, 1351, 1247, 1142, 1104 cm⁻¹; ESI-MS: m/z 468 [M+1]⁺; HRMS: m/z 468.1539 calcd for C₁₈H₃₂NO₉P₂+H⁺ (468.1546).

Tetraisopropyl-2-(benzo[d][1,3]dioxol-5-yl)ethene-1,1-diyldiphosphonate (6o). Yellow oil; yield: 55%; ¹H NMR (400 MHz CDCl₃, ppm): δ 8.16 (dd, $J_1 = 32$ Hz, $J_2 = 48$ Hz, 1H), 7.65 (s, 1H), 7.34-7.32 (d, J = 8 Hz, 1H), 6.83-6.80 (d, J = 12 Hz, 1H), 6.01 (s, 2H), 4.82-4.69 (m, 4H), 1.40-1.34 (m, 12H), 1.27-1.21 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.79, 149.88, 147.56, 128.34, 121.31, 120.0, 111.09, 107.86, 101.59, 71.49, 71.44, 71.41, 71.36, 24.08, 24.05, 23.98, 23.94, 23.59, 23.55; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 16.20-15.89 (d, J = 50.21 Hz), 10.51-10.20 (d, J = 50.21 Hz); IR (CHCl₃): v_{max} 3447, 2979, 2932, 1725, 1620, 1564, 1505, 1490, 1449, 1244, 1106 cm⁻¹; ESI-MS: m/z 477 [M+1]⁺; HRMS: m/z 477.1796 calcd for C₂₁H₃₅O₈P₂+H⁺ (477.1801).

Tetraethyl-2-(naphthalen-1-yl)ethene-1,1-diyldiphosphonate (6p). Yellow oil; yield: 65%; HPLC: $t_{\rm R} = 10.37 \text{ min } (95.8\% \text{ purity}); {}^{1}\text{H NMR } (400 \text{ MHz, CDCl}_{3}, \text{ppm}): \delta 8.86 (dd, <math>J_{1} = 28 \text{ Hz}, J_{2} = 48 \text{ Hz}, 1\text{ H}$),7.89-7.81 (m, 4H), 7.56 -7.48 (m, 3H), 4.33-4.27 (m, 4H), 3.93-3.79 (m, 4H), 1.44 (t, J = 4 Hz, 6H), 0.95 (t, J = 4 Hz, 6H); ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃, ppm): δ 160.14, 160.12, 132.95, 132.02, 130.54, 130.07, 128.61, 127.34, 126.77, 126.23, 125.05, 124.78, 124.72, 124.15, 62.88, 62.84,62.42, 62.36, 16.42, 16.36, 15.86, 15.80; ${}^{31}\text{P}$ NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 16.16-15.83 (d, J = 53.45 Hz), 11.81-11.48 (d, J = 53.45 Hz); IR (CHCl₃): v_{max} 3437, 2929, 2983, 2095, 1634, 1392, 1238, 1162, 1022 cm⁻¹; ESI-MS: m/z 427.0 [M+Na]⁺; HRMS: m/z 427.1430 calcd for $C_{20}H_{29}O_6P_2+H^+$ (427.1433).

Tetraisopropyl-2-(naphthalen-1-yl)ethene-1,1 diyldiphosphonate (6q). Yellow oil; yield: 60%; HPLC: $t_{\rm R} = 31.53$ min (97.6% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.76 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.86-7.78 (m, 4H), 7.46-7.20 (m, 3H), 4.85-4.78 (m, 2H), 4.51-4.44 (m, 2H), 1.381.36 (m, 12H), 0.98 (d, J = 8Hz, 6H), 0.88 (d, J = 4Hz, 6H);¹³C NMR (100 MHz, CDCl₃, ppm): δ 158.21, 132.53, 130.38, 129.72, 129.28, 128.12, 127.12, 126.14, 125.61, 124.59, 123.86, 71.25, 71.20, 70.76, 70.71, 23.77, 23.74, 23.58, 23.53, 23.50, 22.95, 22.91; 31P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.03-13.69 (d, J = 55.07 Hz), 9.66-9.33 (d, J = 53.45 Hz); IR (CHCl₃): v_{max} 3436, 2979, 2930, 2079, 1633, 1452, 1385, 1240, 1177, 1106 cm⁻¹; ESI-MS: m/z 483 [M+H]⁺; HRMS: m/z483.2057 calcd for C24H37O6P2+H+ (483.2059).

Tetraisopropyl-2-(quinol-5-yl)ethene-1,1-diyldiphosphonate (6r). Yellow oil; yield: 62%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.77 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 7.81-7.73 (m, 4H), 7.46-7.19 (m, 2H), 4.85-4.80 (m, 2H), 4.49-4.44 (m, 2H), 1.38-1.25 (m, 12H), 0.99-0.88 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 158.69, 133.15, 133.06, 132.98, 130.85, 130.83, 129.69, 128.54, 127.55, 126.55, 126.03, 124.98, 124.31, 71.67, 71.21, 71.15, 71.09, 24.68, 24.17, 23.98, 23.36; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.02-13.68 (d, J = 55.07 Hz), 9.64-9.31 (d, J = 53.45 Hz; IR (CHCl₃): v_{max} 3435, 2978, 2928, 1586, 1452, 1385, 1374, 1241, 1141, 1105 cm⁻¹; ESI-MS: m/z 483.1 [M]⁺.

Tetraethyl-2-(anthracene-10-yl)ethene-1,1-diyldiphosphonate (6s). Yellow oil; yield: 58%; HPLC: $t_{\rm R} = 19.95 \text{ min (98\% purity); }^{1}$ H NMR (400 MHz, CDCl₃, ppm): δ 8.89 (dd, $J_1 = 28$ Hz, $J_2 = 48$ Hz, 1H), 8.37 (s, 1H), 7.94-7.85 (m, 4H), 7.43-7.19 (m, 4H), 4.38-4.31 (m, 4H), 3.56-3.50 (m, 2H), 3.36-3.32 (m, 2H), 1.44 (t, J = 4 Hz, 6H), 0.62 (t, J = 4 Hz, 6H); 13 C NMR (100 MHz, CDCl₃, ppm): δ 159.67, 130.87, 130.14, 129.52, 128.49, 127.72, 127.32, 125.76, 125.73, 125.39, 63.10, 63.06, 62.11, 62.06, 16.52, 16.47, 16.32, 16.30, 15.56, 15.51; 31 P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 14.95-14.61 (d, J = 55.07 Hz), 10.34-9.99 (d, J = 56.69 Hz); IR (CHCl₃): v_{max} 3435, 2919, 1601, 1404, 1360, 1280, 1186, 1148, 1019 cm⁻¹; ESI-MS: m/z 477 [M+1]⁺; HRMS: m/z 477.1590 calcd for C₂₄H₃₁O₆P₂+H⁺ (477.1590). (*E*)-*Diethyl* 4-*chlorostyrylphosphonate* (7*a*). Yellow oil; yield: 55%; HPLC: $t_{\rm R} = 11.17$ min (98.8% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.50-7.35 (m, 5H), 6.28 (t, J = 16 Hz, 1H), 4.18-4.10 (m, 4H), 1.36 (t, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 147.31, 147.25, 136.15, 133.42, 129.13, 128.90, 115.46, 113.93, 61.98, 61.94, 16.43, 16.38; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz) δ 18.98 (s); IR (CHCl₃): v_{max} 3449, 2981, 2928, 1593, 1618, 1443, 1246,1163,1052, 1025 1094, cm⁻¹; ESI-MS: m/z 296.94 [M+Na]⁺; HRMS: m/z 275.0601 calcd for C₁₂H₁₇ClO₃P+H⁺ (275.0598).

(*E*)-*Diethyl 3, 5-difluoro styrylphosphonate* (7*b*). Yellow oil; yield: 58%; HPLC: $t_{\rm R} = 8.69$ min (91.3% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.44-7.34 (m, 1H), 7.01 (d, J = 8 Hz, 2H), 6.85-6.81 (m, 1H), 6.28 (t, J = 16 Hz, 1H), 4.17-4.12 (m, 4H), 1.36 (t, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.33, (d, ¹ $J_{CF} = 249.5$ Hz), 163.20 (d, ¹ $J_{CF} = 249.51$ Hz), 145.95, 138.22 (d, ² $J_{CF} = 24.14$ Hz), 118.54, 116.64, 110.47 (m), 105.35 (m), 70.10 (m), 62.10 (m), 45.00, 29.61 (m), 27.04 (m), 16.45, 16.38; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 17.73 (s); IR (CHCl₃): v_{max} 3436, 2980, 2926, 2851, 2461, 1615, 1596, 1497, 1458, 1441, 1394, 1265, 1245, 1192, 1162, 1097, 1050, 1021 cm⁻¹; MS: m/z 277.10 [M+1]⁺; HRMS: m/z 299.0618 calcd for C₁₂H₁₅F₂O₃P+Na⁺ (299.0618).

(*E*)-*Diethyl 3-bromo 4-methoxystyrylphosphonate (7c)*. Yellow oil; yield 60%; HPLC: t_R = 11.1 min (95.4% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.73 (s, 1H), 7.43-7.38 (m, 2H), 6.90 (d, J = 8 Hz, 1H), 6.11 (t, J = 16 Hz, 1H), 4.18-4.09 (m, 4H), 3.93 (s, 3H), 1.35 (t, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.31, 159.29, 157.82, 136.13, 132.28, 129.77, 111.24, 110.99, 62.69, 62.63, 62.56, 62.49, 56.36, 16.36, 16.29, 16.18, 16.12; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz) δ 18.49 (s); IR (CHCl₃): v_{max} 3457, 2981, 2929, 2849, 1730, 1615, 1596, 1555, 1497, 1461,

1442, 1394, 1297, 1265, 1247, 1163, 1097, 1051, 1024 cm⁻¹; ESI-MS: *m/z* 351 [M+2]⁺; HRMS: *m/z* 349.0202 calcd for C₁₃H₁₉BrO₄P₂+H⁺ (349.0198).

(*E*)-*Diethyl* 3-*bromo-4-fluorostyrylphosphonate* (7*d*). Yellow oil; yield: 65%; HPLC: $t_{\rm R} = 12.86$ min (97.8% purity); ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72-7.70 (m, 1H), 7.44-7.35 (m, 2H), 7.14 (t, J = 8 Hz, 1H), 6.20 (t, J = 16 Hz, 1H), 4.18-4.10 (m, 4H), 1.36 (t, J = 8 Hz, 6H); ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz) δ 18.45 (s); IR (CHCl₃): $v_{\rm max}$ 3436, 2985, 2930, 2079, 1633, 1494, 1443, 1393, 1249, 1047, 1026 cm⁻¹; ESI-MS: m/z 336.88 [M+1]⁺; HRMS: m/z 336.9999 calcd for C₁₂H₁₆BrFO₃P₂+H⁺ (336.9999).

General procedure for preparation of alkynylphosphonates 8a-c. To a solution of ethynylbenzene **12a-c** (0.1 ml, 18.2 mmol) in dry THF (5ml) was added *n*-BuLi (0.2ml, 20 mmol) under nitrogen at -78 °C. The mixture was stirred at -78 °C for 2 hours, then diethylchlorophosphate **13** (0.3 ml, 20 mmol) in dry THF (5 ml) was added at -78 °C. The solution was stirred for 1 hour at -78 °C, warmed to room temperature and stirred for 3 hours. The mixture was evaporated, and the resulting residue was purified by column chromatography on silica gel to produced **8a-c** 80-85% yield.

Diethyl 2-phenylethynylphosphonate (8a). Yellow oil; yield 75%; HPLC: $t_{\rm R} = 11.64$ min (98.8% purity); ¹H NMR (400 MHz, CH₃OD, ppm): δ 7.57 (d, J = 8Hz, 2H), 7.45 (d, J = 8Hz, 1H), 7.40-7.32 (m, 2H), 4.27-4.20 (m, 4H), 1.41 (t, J = 8Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 132.54, 130.70, 128.54, 119.45, 119.40, 99.34, 98.81, 79.76, 63.25, 63.19, 16.10, 16.03; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ -6.16 (s); IR (CHCl₃): v_{max} 3480, 3061, 2909, 2985, 2187, 2081, 1638, 1490, 1227, 1263, 1024, cm⁻¹; ESI-MS: m/z 239 [M+1]⁺. HRMS: m/z 239.0826 calcd for C₁₂H₁₆O₃P+H⁺ (239.0831).

Diethyl-2-(4-(trifluoromethyl)pheny)lethynylphosphonate (8b). Yellow oil; yield: 80%; HPLC: $t_{\rm R}$ = 11.46 min (99% purity); ¹H NMR (400 MHz, CH₃OD, ppm): δ 7.71- 7.64 (m, 4H), 4.29-4.22 (m, 4H), 1.42 (t, J = 4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 131.55, 124.20, 124.18, 124.15, 124.12, 95.55, 95.14, 80.45, 78.09, 62.14, 62.09, 14.76, 14.70; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ -6.94 (s); IR (CHCl₃): v_{max} 3486, 3101, 2936, 2986, 2641, 2192, 2085, 1614, 1479, 1445, 1405, 1325, 1266, 1170, 1132, 1066 cm⁻¹; ESI-MS: m/z 307 [M+1]⁺; HRMS: m/z 307.0701 calcd for C₁₃H₁₅F₃O₃P+H⁺ (307.0705).

Diethyl-2-(3-(trifluoromethyl)pheny)lethynylphosphonate (8c). Yellow oil; yield: 85%; HPLC: $t_{\rm R}$ = 11.41 min (98.4% purity); ¹H NMR (400 MHz, CH₃OD, ppm): δ 7.83 (s, 1H), 7.76-7.70 (m, 2H), 7.54 (t, *J* = 8Hz, 1H), 4.29-4.21 (m, 4H), 1.44-1.41 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 135.67, 131.42, 129.30, 127.24, 123.27 (d, ¹*J*_{CF} = 271.25 Hz), 120.58, 96.66 (d, ²*J*_{CF} = 52.50 Hz), 81.15, 67.39, 63.61 (m), 32.26, 18.63, 16.12, 13.55; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ -6.93 (s); IR (CHCl₃): v_{max} 3436, 2931, 2979, 1579, 1612, 1508, 1385, 1335, 1281, 1245, 1106 cm⁻¹; MS: *m/z* 307 [M+1]⁺; HRMS: *m/z* 307.0703 calcd for C₁₃H₁₅F₃O₃P+H⁺ (307.0705).

General procedure for preparation of α -amino alkynylphosphonates 9a-b: To a solution of benzaldehyde 10a-b (0.1ml, 2 mmol) in aceto nitrile (5 ml) was added amines 14a-b (0.1 ml, 2 mmol) and diethyl phosphite 15 (0.1 ml, 2 mmol) then stirring the mixture for 2 h at room temperature. After complete reaction extracted with EtOAc and water. The organic layer was dried over Na₂SO₄. Concentration in *vacuo* followed by column chromatography on silica gel provided the corresponding α -amino alkynylphosphonates 9a-b with 80-85% yield.

Diethyl phenyl(phenylamino)methylphosphonate (9a). White powder; yield 80%; m.p. 86-88 °C; HPLC: $t_{\rm R} = 10.99$ min (98% purity); ¹H NMR (400 MHz, CH₃OD, ppm): δ 7.40-7.39 (m, 2H), 7.24-7.15 (m, 3H), 6.96-6.93 (m, 2H), 6.60 (d, J = 6.4 Hz, 2H), 6.50-6.51 (t. J = 6.0 Hz, 1H), 4.85 (d, ¹ $J_{\rm PH}$

= 19.6 Hz, 1H), 4.04-3.96 (m, 2H), 3.89-3.35 (m, 1H), 3.75-3.70 (m, 1H), 1.15 (t, J = 5.6 Hz, 3H), 1.04 (t, J = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 148.20, 148.06, 137.48, 129.99, 129.43, 128.93, 119.19, 115.07, 64.79, 64.72, 64.58, 64.51, 56.64 (d, ¹ $J_{CP} = 152.1$ Hz), 16.75, 16.69, 16.57, 16.51; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 22.70 (s); IR (CHCl₃): v_{max} 3435, 3294, 3029, 2981, 1605, 1497, 1454, 1386, 1234, 1057, 1024 cm⁻¹; ESI-MS: m/z 342.18 [M+Na]⁺; HRMS: m/z 320.1408 calcd for C₁₇H₂₃NO₃P+H⁺ (320.1410).

Diethyl-(4-chlorophenyl)(phenylamino)methylphosphonate (9b). White solid power; yield: 90%; m.p. 60-62 °C; HPLC: $t_{\rm R} = 16.71$ min (93.99% purity); ¹H NMR (400 MHz, CH₃OD, ppm): δ 7.40-7.37 (m, 2H), 7.22 (d, J = 8.0 Hz 2H), 6.98-6.94 (m, 2H), 6.59-6.51 (m, 3H), 4.88 (d, ¹ $J_{\rm PH} = 24.8$ Hz, 1H), 4.05-3.97 (m, 2H), 3.95- 3.89 (m, 1H), 3.83-3.77 (m, 1H), 1.16 (t, J = 8.0 Hz, 3H), 1.08 (t, J =8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 144.88, 133.39, 132.57, 132.54, 128.07, 127.99, 127.94, 127.65, 117.51, 112.67, 62.31, 62.26, 62.16, 54.36 (d, ¹ $J_{\rm CP} = 150$ Hz), 15.28, 15.24, 15.10, 15.05; ³¹P NMR (CDCl₃, H₃PO₄, 161.98 MHz): δ 22.02 (s); IR (CHCl₃): v_{max} 3436, 2927, 2317, 1603, 1498, 1235, 1051, 1020 cm⁻¹; ESI-MS: m/z 376.15[M+Na]⁺; HRMS: m/z 376.0848 calcd for C₁₇H₂₁ClNNaO₃P+H⁺ (376.0839).

Cell culture and treatments. Human colorectal adenocarcinoma LS180 cells were purchased from ECACC, England. These cells were grown in MEM growth medium. The media for cell line was supplemented with 1% MEM non-essential amino acids along with 10% FCS, 100 U penicillin G and 100 μ g/ml of streptomycin. Cells were grown in 5% CO₂ at 37 °C with 95% humidity. All the test compounds were dissolved in DMSO for treatment of LS180 cells, while the untreated control cultures received only the vehicle (DMSO< 0.2%).

P-gp-induction assay. All synthesized compounds were screened for their ability to induce P-gp using rhodamine 123 cell exclusion method.¹ In this method, the P-gp function was evaluated in

terms of rhodamine 123 accumulation and efflux.² Briefly, the protocol used was as follows: Colorectal LS180 cells were seeded at a density of 2×10^4 per well of 96 well plate and were allowed to grow for next 24 h. Cells were further incubated with the test compounds, and were diluted to a final concentration of 5 µM and rifampicin (positive control) to a final concentration of 10 µM in complete media for 48 h. The final concentration of DMSO was kept at 0.1%. Drugs were removed and cells were incubated with HANKS buffer for 40 minutes before further incubation with HANKS buffer (containing 10 µM of Rh123 as a P-gp substrate) for 90 minutes. At the end of Rh123 treatment cells were washed four times with cold PBS followed by cell lysis for 1 h using 200 µl of lysis buffer (0.1% Triton X 100 and 0.2 N NaOH). A total of 100 µl of lysate was used for reading fluorescence of Rh123 at 485/529 nm. Samples were normalized by dividing fluorescence of each sample with total protein present in the lysate.

Cell viability assay. The cell proliferation assay was done in human colorectal adenocarcinoma LS180 cells. Cells (1×10^4) were seeded into each well of 96-well microplate for 24 h. Cells were treated with 30 µM of each compound for 24 h. The MTT dye was then added to each well 4 h prior to the termination of experiment. Formazan crystals were dissolved in DMSO before taking absorbance at 570 nm. Cell viability of the untreated control sample was considered to be 100%, while viability of test samples was calculated using the following formula:

% cell viability =
$$\frac{OD (test)}{OD (control)} \times 100$$

Western-blot analysis of compounds 6c and 6s in LS180 cells. Protein was measured employing Bio-Rad protein assay kit using bovine serum albumin as standard. Proteins aliquots (70 μ g) were resolved on SDS-PAGE and then electro transferred to PVDF membrane overnight at 4 °C at 30V. Nonspecific binding was blocked by incubation with 5 % non-fat milk in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 1 h at room temperature. The blots were probed with anti-Pgp antibody for 4 h and washed three times with TBST. Blot was then incubated with horseradish peroxidase conjugated antimouse secondary antibody for 1 h, washed again three times with TBST and signals detected using ECL plus chemiluminescence's kit on BioRad ChemiDoc XRS system.

Aqueous solubility, CYP liability and Caco-2 permeability and pharmacokinetic analysis was performed as reported in our earlier papers.³

The pharmacokinetic study was carried out at Jubilant Biosys Limited Bangalore (India) on a commercial basis. These experiments were approved by the Jubilant Biosys Institutional Animal Ethics Committee, Bangalore, India (IAEC/JDC/2012/27) and were in accordance with the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Social Justice and Environment, Government of India.

Statistical analysis. Data is expressed as mean \pm SD of three independent experiments unless otherwise indicated. The comparisons were made between control and treated groups or the entire intra group using Bonferroni test through Instat-2 software. *p* -values *<0.5 were considered significant.

S4. **REFERENCES ASSOCIATED WITH ESI**

- J. B. Bharate, A. Wani, S. Sharma, S. I. Reja, M. Kumar, R. A. Vishwakarma, A. Kumar and S. B. Bharate, *Org. Biomol. Chem.*, 2014, 12, 6267-6277.
- M. Kageyama, K. Fukushima, T. Togawa, K. Fujimoto, M. Taki, A. Nishimura, Y. Ito, N. Sugioka, N. Shibata and K. Takada, *Biol. Pharm. Bull.*, 2006, 29, 779-784.
- (a) S. Mahale, S. B. Bharate, S. Manda, P. Joshi, S. S. Bharate, P. R. Jenkins, R. A. Vishwakarma and B. Chaudhuri, *J. Med. Chem.*, 2014, 57, 9658-9672; (b) S. S. Bharate and R. A. Vishwakarma, *Bioorg. Med. Chem. Lett.*, 2015, 25, 1561–1567.