Electronic Supporting Information Materials

Synthesis, crystal structure, cytotoxicity and action mechanism of Rh(III) complex with 8-hydroxy-2-methylquinoline as a ligand

Yun-Liang Zhang^{a,b,†,*}, Qi-Pin Qin^{a,†}, Qian-qian Cao^a, Hong-Hua Han^a, Zhu-Ling Liu^a, Yan-Cheng Liu^a, Hong Liang^a and Zhen-Feng Chen^{a,*}

Empirical formula	$C_{14}H_{20}C1_2NO_3RhS_2$			
Formula weight	488.26			
Temperature/K	296.15			
Crystal system	monoclinic			
Space group	$P2_1/n$			
a/Å	8.9953(9)			
b/Å	15.618(2)			
c/Å	13.4715(15)			
α /°	90			
β∕°	103.827(12)			
γ/°	90			
Volume/Å ³	1837.7(4)			
Z	4			
$ ho_{calc}g/cm^3$	1.7646			
μ / mm^{-1}	1.459			
F (000)	982.0			
Crystal size/mm ³	$0.22 \times 0.2 \times 0.18$			
Radiation	Mo Ka ($\lambda = 0.71073$)			
2Θ range for data collection/°	6.22 to 52.74			
Index renges	$-8 \leq h \leq 12$, $-18 \leq k \leq 21$,			
Index Tanges	$-18 \leqslant 1 \leqslant 17$			
Reflections collected	7465			
Independent reflections	3753 [R_{int} = 0.0903, R_{\text{sigma}} =			
	0. 1174]			
Data/restraints/parameters	3753/0/212			
Goodness-of-fit on F^2	1.066			
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0956, wR_2 = 0.2539$			
Final R indexes [all data]	$R_1 = 0.1281, wR_2 = 0.2872$			
Largest diff. peak/hole / e Å ⁻³	3. 84/-2. 16			

 Table S1. Crystal data and structure refinement details for complex 1.

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|;$ ^b $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{\frac{1}{2}}.$

Bond lengths (Å) for 1								
Rh1-S0aa	2.295(3)	Rh1-Cl	2.349(3)	Rh1-S1	2.282(3)	Rh1-O1aa	2.010	(7)
Rh1-N	2.119(8)	Rh1-Cl8	2.359(3)					
Bond angles (°) for 1								
Cl-Rh1-S0aa	176.33(10)	S1-Rh1-S0aa	96.83(10)	S1-Rh1-Cl	86.83(11)	O1aa-Rh1-	S0aa	88.6(2)
O1aa-Rh1-Cl	91.3(2)	O1aa-Rh1-S1	87.5(2)	N-Rh1-S0aa	88.2(2)	N-Rh1-Cl		88.1(2)
N-Rh1-S1	168.2(3)	N-Rh1-O1aa	82.0(3)	Cl8-Rh1-S0aa	89.30(12)	Cl8-Rh1-C	1	91.21(13)
Cl8-Rh1-S1	87.00(12)	Cl8-Rh1-O1aa	173.8(2)	Cl8-Rh1-N	103.8(3)	C4aa-S0aa	-Rh1	115.0(5)

Table S2 Selected bond lengths (Å) and bond angles (°) for complex 1.

Table S3 Inhibition rates of H-MQ, RhCl₃, complex **1** and cisplatin towards five selected tumor cell lines and one normal liver cell HL-7702 for 48 h.

Compounds	BEL-7404	Hep-G2	NCI-H460	T-24	A549	HL-7702
H-MQ a	32.36±1.32	37.27±0.64	30.98±1.76	27.07±0.76	31.14±1.39	30.47±0.42
1 a	60.25±1.81	88.49±0.81	52.13±0.55	61.86±1.25	55.09±2.19	39.44±0.45
RhCl ₃ ^b	10.58 ± 1.09	18.55±0.56	19.11±0.74	20.18 ± 1.94	14.32 ± 0.83	10.85 ± 1.63
Cisplatin ^c	55.15±1.18	60.63±0.99	50.88±1.29	46.86±1.06	52.18±1.47	68.95±1.42

Results represent mean \pm SD of at least five independent experiments. SD represents the standard deviation. ^a The concentration is 2 ×10⁻⁵ mol/L. ^b The concentration is 1× 10⁻⁴ mol/L. ^c Cisplatin was dissolved at a concentration of 1 mM in 0.154 M NaCl. NA represents no activity.

Table S4. IC_{50}^{a} (μM) values of H-MQ, RhCl₃, complex 1 and cisplatin towards normal liver cell

Compounds	BEL-7404	Hep-G2	NCI-H460	T-24	A549	HL-7702
H-MQ	152.45±1.04	137.35±0.58	168.92±1.65	187.54±0.69	107.56±1.03	170.65±0.34
1	10.33 ± 1.74	6.52 ± 0.83	17.86 ± 0.65	9.87±1.23	15.07 ± 2.33	28.74 ± 0.38
RhCl ₃	>100	>100	>100	>100	>100	>100
Cisplatin ^c	12.41±0.38	9.48±0.35	18.89 ± 1.02	28.86 ± 1.05	18.19±1.39	15.67±1.27

 a IC_{50} values are presented as the mean \pm SD (standard error of the mean) from five independent experiments. b The concentration unit is $\mu M.~^c$ Cisplatin was dissolved at a concentration of 1 mM in 0.154 M NaCl.

Figure S2. ¹H NMR (600 MHz, DMSO-*d*₆) for complex 1.

Figure S3. UV-Vis absorption spectra of complex 1 (4.0×10^{-5} M) in Tris-HCl solution (TBS) in the time course 0, 24 and 48 h, respectively.

Figure S4. UV-Vis absorption spectra of complex $1 (4.0 \times 10^{-5} \text{ M})$ in water in the time course 0, 24 and 48 h, respectively.

Figure S5. The mass spectra of complex **1** in Tris-HCl buffer solution (containing 5% DMSO) for 0 h (top) and 48 h (down), respectively.