Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives

Radhakrishnam Raju Ruddarraju,^a Adharvana Chari Murugulla,^{a,*} Ravindar Kotla,^a Muni Chandra Babu Tirumalasetty,^b Rajendra Wudayagiri,^b Shobha Donthabakthuni,^a Ravichandar Maroju^c

^a Dr.MACS Bio-Pharma Pvt. Ltd, Factory: Plot-79/B&C, Pasamylaram, Patancheru, Medak (Dist)-502307, Telangana, India.

^b Bioinformatics Center, Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati-517 502, Andhra Pradesh, India.
^c Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad-500 075, Telangana, India.

Supplementary material

Figures:

Fig 1. Bioactive theophylline and 1,2,3-triazole moieties.

Fig. 2 Molecular and Lig plot interactions of compound 22 (A) and 41 (B) with tyrosine kinase domain of Human epidermal growth factor receptor 2 (HER2).

Schemes:

Scheme 1 Synthesis of biphenyl amine compounds 5,7,12 and 15. Reagents and conditions: (a) K_3PO_4 , $Pd(dppf)Cl_2 \cdot CH_2Cl_2$, 1,4-dioxane: H_2O , 100°C, 10-16 h.

Scheme 2 Synthesis of aliphatic cyclic amide and biphenyl amide compounds **22–31** and **32–41**. Reagents and conditions: (a) (i) K_2CO_3 , DMF, 85°C, 12 h (ii) TPP, DIAD, THF, rt, 5 h; (b) LiOH·H₂O, THF:H₂O, rt, 2h; (c) DCC, DMAP, DCM, rt, 16 h; (d & e) CuSO₄·5H₂O, sodium ascorbate, *t*-BuOH:H₂O, rt, 16 h; (f, g & h) HATU, DIPEA, DCM, rt, 16 h.

Experimental Section

Materials and methods

Starting materials were obtained from commercial suppliers and used without further purification. Melting points were determined in open glass capillaries on a Fisher–Johns melting point apparatus and are uncorrected. The ¹H NMR and ¹³C NMR spectra were taken on a VNMRS 400 MHz spectrometer using the solvent (CDCl₃ 7.26 ppm and 77.0 ppm, DMSO- d_6 2.49 ppm and 39.7 ppm) and TMS used as an internal standard. Chemical shifts are given in δ ppm and coupling constant (J) is given in Hz. IR spectra were recorded on a Perkine Elmer FTIR 1600 spectrometer for samples in KBr discs. Low-resolution MS data were obtained using ESI, and high-resolution spectra were recorded on QSTARXL hybrid MS/MS system (Applied Biosystems, USA) under ESI. Elemental analysis (CHN) was performed on a elementar analysensysteme GmbH - vario MICRO element analyzer. All compounds were purified by flash chromatography (FC) was performed using on silica gel (100-200 mesh). All the reactions were monitored by Thin-layer chromatography (TLC) on Silica Gel 60 F254 plates (VWR, Darmstadt); visualization by UV detection at 254 nm.

General procedure for the synthesis of compounds 5, 7, 10, 12 and 15.

To a stirred solution of aryl halide compounds **4**,**6**,**9**,**11** and **13** (1.0 equiv), corresponding boronic acids or boronate esters **3**,**8** and **14** (1.2 equiv) and potassium phosphate (2.0 equiv) in 1,4-dioxane and water (10:2). The suspension was deoxygenated with argon for 10 min and were added $Pd(dppf)Cl_2 \cdot CH_2Cl_2$ (0.05 equiv) and again deoxygenated with argon for 5 min. The reaction mixture was stirred at 100°C for 10-16 h. The reaction mixture was cooled to room temperature, concentrated and added to water and extracted with ethyl acetate twice. The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and evaporated under reduced pressure. The crude compounds was purified by flash chromatography over silica gel (100-200 mesh) eluting with 2 to 6% MeOH in dichloromethane to afford desired compounds **5**,**7**,**10**,**12** and **15**.

[2,3'-bipyridin]-5-amine (5). 6-chloropyridin-3-amine **4** (1 g, 7.811 mmol), pyridin-3-ylboronic acid **3** (1.15 g, 9.374 mmol), K₃PO₄ (3.31 g, 15.62 mmol) and Pd(dppf)Cl₂.CH₂Cl₂ (318.9 mg, 0.390 mmol) in 1,4-dioxane and H₂O to afford pale brown solid 400 mg (30%). ¹H NMR (400 MHz, DMSO- d_6): δ 9.10 (d, *J* = 2.0 Hz, 1H), 8.46 (dd, *J* = 1.2 Hz, 4.4 Hz, 1H), 8.25 (dd, *J* = 2.0 Hz, 4.0 Hz, 1H), 8.05 (d, *J* = 2.4 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.41–7.38 (m, 1H), 7.01 (dd, *J* = 2.8 Hz, 8.8 Hz, 1H), 5.58 (brs, 2H); *m/z* (MM–ES+APCI)⁺: 172.0 [C₁₀H₉N₃+H]⁺.

4-(pyridin-3-yl) aniline (7). 4-chloroaniline **6** (1 g, 5.848 mmol), pyridin-3-ylboronic acid **3** (863 mg, 7.018 mmol), K_3PO_4 (2.48 g, 11.697 mmol) and Pd(dppf)Cl₂.CH₂Cl₂ (238 mg, 0.292 mmol) in 1,4-dioxane and H₂O to afford off-white solid 250 mg (25%). ¹H NMR (400 MHz, CDCl₃): δ 8.79 (s, 1H), 8.50 (d, *J* = 4.4 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.31–7.28 (m, 1H), 6.78 (d, *J* = 8.0 Hz, 2H), 3.78 (brs, 2H); *m/z* (ES)⁺: 170.91 [C₁₁H₁₀N₂+H]⁺.

4-(pyridin-2-yl)aniline (10). 2-bromopyridine **9** (1 g, 6.371 mmol), 4-aminophenyl boronic acid pinacol ester **8** (1.67 g, 7.645 mmol), K_3PO_4 (2.70 g, 12.742 mmol) and Pd(dppf)Cl₂.CH₂Cl₂ (260 mg, 0.318 mmol) in 1,4-dioxane and H₂O to afford pale brown solid 650 mg (60%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.51 (dd, *J* = 1.2 Hz, 3.6 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 4.8 Hz, 2H), 7.15–7.12 (m, 1H), 6.62 (d, *J* = 8.4 Hz, 2H), 5.38 (brs, 2H); *m/z* (ES)⁺: 171.10 [C₁₁H₁₀N₂+H]⁺.

4-(pyrimidin-5-yl)aniline (12). 5-bromopyrimidine **11** (1 g, 6.331 mmol), 4-aminophenyl boronic acid pinacol ester **8** (2.08 g, 9.496 mmol), K₃PO₄ (2.68 g, 12.662 mmol) and Pd(dppf)Cl₂.CH₂Cl₂ (258 mg, 0.316 mmol) in 1,4-dioxane and H₂O to afford brown solid 680 mg (63%). ¹H NMR (400 MHz, DMSO- d_6): δ 9.01 (s, 1H), 8.99 (s, 2H), 7.49 (d, *J* = 9.2 Hz, 2H), 6.67 (d, *J* = 9.2 Hz, 2H), 5.46 (brs, 2H); *m/z* (ES)⁺: 172.13 [C₁₀H₉N₃+H]⁺.

6-phenylpyridazin-3-amine (15). 6-chloropyridazin-3-amine **13** (1 g, 7.751 mmol), phenylboronic acid **14** (1.13 g, 9.301 mmol), K_3PO_4 (3.29 g, 15.502 mmol) and Pd(dppf)Cl₂.CH₂Cl₂ (316 mg, 0.387 mmol) in 1,4-dioxane and H₂O to afford pale brown solid 350 mg (26%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.96 (d, *J* = 7.2 Hz, 2H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.48–7.37 (m, 3H), 6.86 (d, *J* = 9.2 Hz, 1H), 6.48 (brs, 2H); *m/z* (ES)⁺: 172.10 [C₁₀H₉N₃+H]⁺.

Ethyl 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)acetate (17a). To a stirred solution of theophylline **16** (6 g, 33.33 mmol) in 60 mL of DMF was added K₂CO₃ (5.97 g, 43.33 mmol) at room temperature. After 20 min, ethyl 2-bromoacetate (5.89 mL, 53.33 mmol) was added to the reaction mixture at room temperature, and was heated to stirred at 85°C for 12 h. As monitored by TLC, the reaction mass was added to water (100 mL) and extracted with ethyl acetate (2 x 50 mL), dried with Na₂SO₄, filtered and concentrated. The crude compound was purified by column chromatography (100-200 mesh) eluted in 2% MeOH in dichloromethane to afford **17a** (7.5 g, 84%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 5.08 (s, 2H), 4.28 (q, *J* = 7.6 Hz, 2H), 3.60 (s, 3H), 3.39 (s, 3H), 1.31 (t, *J* = 7.6 Hz, 3H); *m/z* (ES)⁺: 267.25 [C₁₁H₁₄N₄O₄+H]⁺.

Ethyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7 (6H)-yl)propanoate (17b). To a stirred solution of theophylline **16** (1 g, 5.555 mmol) and ethyl 2-hydroxypropanoate (0.318 mL, 2.776 mmol) in THF (20 mL) were added triphenyl phosphine (1.45 g, 5.553 mmol) at room temperature. After 10 min, DIAD (1.09 mL, 5.553 mmol) added drop wise to the reaction mixture and stirring was continued at room temperature for 5 h. As monitored by TLC, the reaction mixture diluted with water (50 mL), extracted with ethyl acetate (2 x 50 mL) and the combined organic extracts were washed with brine (1 x 50 mL), dried over anhydrous Na_2SO_4 and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (100-200 mesh) eluting with a gradient of 20-60% ethyl acetate in hexane to gave semi solid which was triturated with diethyl ether to afford **17b** (0.78 g, 50%) as an off-white solid. ¹H NMR (400 MHz,

DMSO-*d*6): δ 8.21 (s, 1H), 5.55 (q, *J* = 7.6 Hz, 1H), 4.14 (q, *J* = 4.0 Hz, 2H), 3.44 (s, 3H), 3.33 (s, 3H), 1.75 (d, *J* = 7.6 Hz, 3H), 1.18 (t, *J* = 6.4 Hz, 3H); *m/z* (ES)⁺: 281.16 [C₁₂H₁₆N₄O₄+H]⁺.

General procedure for the synthesis of compounds (18a and 18b)

LiOH·H₂O (1.5 equiv) was added portionwise to a stirred solution of ester compounds **17a-17b** (1.0 equiv) in THF (10 vol), and H₂O (10 vol) at room temperature and the reaction mixture was stirred for 2 h. As monitored by TLC, from the reaction mixture THF was concentrated and acidified with aqueous KHSO₄ solution and extracted with 5% methanol and dichloromethane. The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and evaporated under reduced pressure to afford the desired solid products **18a-18b**.

2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) acetic acid (18a). Compound **17a** (5 g, 18.78 mmol), LiOH·H₂O (1.18 g, 28.18 mmol) in 100 mL of THF:H₂O (1:1) to afford **18a** (4.1 g, 91%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 13.27 (brs, 1H), 8.04 (s, 1H), 5.07 (s, 2H), 3.44 (s, 3H), 3.20 (s, 3H); m/z (ES)⁺: 239.04 [C₉H₁₀N₄O₄+H]⁺.

2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) propanoic acid (18b). Compound **17b** (1 g, 3.569 mmol), LiOH·H₂O (224 mg, 5.354 mmol) in 20 mL of THF:H₂O (1:1) to afford **18b** (880 mg, 98%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.24 (brs, 1H), 8.20 (s, 1H), 5.47 (q, *J* = 7.6 Hz, 1H), 3.44 (s, 3H), 3.21 (s, 3H), 1.75 (d, *J* = 7.2 Hz, 3H); *m/z* (ES)⁺: 253.08 [C₁₀H₁₂N₄O₄+H]⁺.

General procedure for the synthesis of compounds (19a and 19b). DCC (1.0 equiv) was added to a stirred and cooled (0 °C) solution of acid compounds **18a-18b** (1.0 equiv) and propargyl alcohol (2.0 equiv) in dichloromethane (30 vol). After 5 min, DMAP (0.2 equiv) was added to the reaction mixture and the solution was allowed to stirred at room temperature for 16 h. As monitored by TLC, the reaction mixture was filtered and the filtrate was washed with water, dried with anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The crude product was triturated diethyl ether to afford the desired products **19a-19b**.

Prop-2-yn-1-yl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)acetate (19a). Compound 18a (2 g, 8.396 mmol), propargyl alcohol (0.96 mL, 16.792 mmol), DCC (1.73 g, 8.396 mmol) and DMAP (205 mg, 1.679 mmol) in 60 mL of DCM to afford 19a (1.8 g, 78%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (s, 1H), 5.15 (s, 2H), 4.82 (d, *J* = 2.8 Hz, 2H), 3.60 (s, 3H), 3.38 (s, 3H), 2.54 (t, *J* = 2.4 Hz, 1H); *m/z* (ES)⁺: 277.21 [C₁₂H₁₂N₄O₄+H]⁺.

Prop-2-yn-1-yl 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoate (19b). Compound **18b** (2 g, 7.933 mmol), propargyl alcohol (0.91 mL, 15.867 mmol), DCC (1.63 g, 7.933 mmol) and DMAP (193 mg, 1.586 mmol) in 60 mL of DCM to afford **19b** (1.92 g, 83%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 8.23 (s, 1H), 5.61 (q, *J* = 7.6 Hz, 1H), 4.76 (s, 2H), 3.60 (t, *J* = 2.4 Hz, 1H), 3.44 (s, 3H), 3.20 (s, 3H), 1.76 (d, *J* = 7.2 Hz, 3H); *m/z* (ES)⁺: 291.3 [C₁₃H₁₄N₄O₄+H]⁺.

General procedure for the synthesis of compounds (20a, 20b and 21a, 21b)

Sodium ascorbate (0.2 equiv) and $CuSO_4$ - $5H_2O$ (0.2 equiv) was added in that ordered to a stirred a solution of propynyl compounds **19a-19b** (1.0 equiv) and 3-azidopropanoic acid (1.8 equiv) or 2-azido acetic acid (1.8 equiv) in ter-butyl alcohol (20 vol) and water (7 vol) at room temperature and reaction mixture was stirred at room temperature for 16 h. As monitored by TLC, reaction mixture was filtered, and washed with ethanol and concentrated. The residue was diluted in 10% methanol in dichloromethane, filtered and evaporated under reduced pressure. The crude compound was recrystallized with acetone to afford the desired solid products **20a-20b** and **21a-21b**.

3-(4-((2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7 (6H)-yl)acetoxy)methyl)-1H-1,2,3-triazol-1-yl)propanoic acid (**20a).** Compound **19a** (1 g, 3.622 mmol), 3-azidopropanoic acid (0.75 g, 6.519 mmol), sodium ascorbate (143 mg, 0.724 mmol) and CuSO₄·5H₂O (180 mg, 0.724 mmol) in *t*-BuOH (20 mL) and water (7 mL) to afford **20a** (1.2 g, 85%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.28 (s, 1H), 8.15 (s, 1H), 8.05 (s, 1H), 5.24 (s, 2H), 5.21 (s, 2H), 4.56 (t, *J* = 6.4 Hz, 2H), 3.44 (s, 3H), 3.20 (s, 3H), 2.89 (t, *J* = 6.8 Hz, 2H); *m/z* (ES)⁺: 392.06 [C₁₅H₁₇N₇O₆+H]⁺.

3-(4-(((2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) propanoyl)oxy) methyl) -1H-1,2,3- triazol-1-yl) **propanoic acid (20b).** Compound 19b (1 g, 3.447 mmol), 3-azidopropanoic acid (0.71 g, 6.204 mmol), sodium ascorbate (136 mg, 0.689 mmol) and CuSO₄·5H₂O (172 mg, 0.689 mmol) in *t*-BuOH (20 mL) and water (7 mL) to afford 20b (1.09 g, 78%) as an off-white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 12.18 (brs, 1H), 8.19 (s, 1H), 8.10 (s, 1H), 5.59 (q, *J* = 7.2 Hz, 1H),

5.20 (s, 2H), 4.54 (t, J = 6.4 Hz, 2H), 3.44 (s, 3H), 3.20 (s, 3H), 2.88 (t, J = 6.8 Hz, 2H), 1.73 (d, J = 7.6 Hz, 3H); m/z (ES)⁺: 406.02 [C₁₆H₁₉N₇O₆+H]⁺.

2-(4-((2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7 (6H)-yl)acetoxy)methyl)-1H-1,2,3-triazol-1-yl)acetic acid (21a). Compound **19a** (0.8 g, 2.897 mmol), 2-azido acetic acid (526 mg, 5.215 mmol), sodium ascorbate (114 mg, 0.579 mmol) and CuSO₄·5H₂O (144 mg, 0.579 mmol) in *t*-BuOH (16 mL) and water (6 mL) to afford **21a** (0.9 g, 82%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.15 (s, 1H), 8.06 (s, 1H), 5.26–5.22 (m, 4H), 5.05 (s, 2H), 3.44 (s, 3H), 3.20 (s, 3H); *m/z* (ES)⁺: 378.09 [C₁₄H₁₅N₇O₆+H]⁺.

2-(4-(((2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)acetic acid (21b). Compound **19b** (0.8 g, 2.757 mmol), 2-azido acetic acid (501 mg, 4.963 mmol), sodium ascorbate (109 mg, 0.551 mmol) and CuSO₄·5H₂O (137 mg, 0.551 mmol) in *t*-BuOH (16 mL) and water (6 mL) to afford **21b** (0.96 g, 77%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.22 (brs, 1H), 8.20 (s, 1H), 8.10 (s, 1H), 5.60 (q, *J* = 7.2 Hz, 1H), 5.25–5.22 (m, 4H), 3.44 (s, 3H), 3.20 (s, 3H), 1.74 (d, *J* = 7.2 Hz, 3H); *m/z* (ES)⁺: 392.06 [C₁₅H₁₇N₇O₆+H]⁺.

General procedure for the synthesis of compounds 22-41

To a stirred solution of acid compounds **20a-20b** or **21a-21b** (1.0 equiv) and their corresponding aliphatic cyclic amines (2.0 equiv) or biphenyl amines (1.5 equiv) in dichloromethane (20 vol) was added HATU (1.5 equiv) and DIPEA (3.0 equiv) at room temperature. The reaction mixture was stirred for 16 h. On completion of the reaction as monitored by TLC, the reaction mixture was poured into water and extracted with 5% methanol in dichloromethane and washed with brine solution. The organic extracts was dried over anhydrous Na_2SO_4 , filtered and concentrated. The crude products were purified by silica-gel (100-200 mesh) short column chromatography using a gradient of 2 to 10 % methanol in dichloromethane to afford desired compounds **22-41**. 13C-NMR of some of new compounds could not be reported because they were synthesized in mg scale and tested for the screening of anticancer activity. HRMS and elemental analysis were reported instead of 13C-NMR, which are technically sufficient for characterization of new compounds.

(1-(3-(cyclohexylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-

7(6H)-yl)acetate (22). Yield: 66%; white solid; mp: 218–220°C; $R_f = 0.78$, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3445, 3287, 3123, 3091, 2928, 2850, 1746, 1709, 1682, 1645, 1557, 1472, 1456, 1375, 1223, 1028, 976, 955, 751; ¹H NMR (400 MHz, DMSO- d_6): δ 8.05 (s, 2H), 7.79 (d, J = 8.0 Hz, 1H), 5.22 (s, 2H), 5.20 (s, 2H), 4.55 (t, J = 6.8 Hz, 2H), 3.50–3.47 (m, 1H), 3.44 (s, 3H), 3.21 (s, 3H), 2.67 (t, J = 6.8 Hz, 2H), 1.68–1.61 (m, 4H), 1.53–1.50 (m, 1H), 1.24–1.18 (m, 2H), 1.13–1.03 (m, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 167.89, 166.91, 155.31, 151.61, 148.63, 141.81, 125.16, 107.11, 59.13, 48.51, 47.30, 46.36, 36.69, 32.95, 29.86, 27.96, 25.37, 24.76; m/z (ES)⁺: 473.30 [C₂₁H₂₈N₈O₅+H]⁺; HRMS (ESI): calcd for C₂₁H₂₉N₈O₅ [M+H]⁺: 473.2260, found: 473.2256; Anal. calcd for C₂₁H₂₈N₈O₅: C, 53.38; H, 5.97; N, 23.72%; Found: C, 53.40; H, 5.99; N, 23.70%.

(1-(3-(cyclopentylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-

7(6H)-yl)acetate (23). Yield: 58%; white solid; mp: compound melting starts at 192°C and completely melts at 198°C; $R_f = 0.75$, mobile phase: MeOH/CH₂Cl₂-1:9; IR (KBr cm⁻¹): 3444, 3290, 3131, 3094, 2956, 2871, 1742, 1705, 1653, 1636, 1553, 1472, 1455, 1407, 1376, 1292, 1222, 1056, 1031, 977, 953, 761, 751; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H), 7.58 (s, 1H), 5.52 (d, J = 6.4 Hz, 1H), 5.34 (s, 2H), 5.07 (s, 2H), 4.68 (t, J = 6.4 Hz, 2H), 4.17–4.12 (m, 1H), 3.60 (s, 3H), 3.38 (s, 3H), 2.77 (t, J = 6.4 Hz, 2H), 1.95–1.90 (m, 2H), 1.61–1.58 (m, 4H), 1.30–1.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 175.1, 164.7, 156.5, 156.2, 155.3, 150.5, 142.9, 142.3, 118.3, 106.8, 55.5, 54.6, 50.7, 46.4, 34.5, 31.3, 29.4, 26.1; m/z (ES)⁺: 459.25 [C₂₁H₂₆N₈O₅+H]⁺; HRMS (ESI): calcd for C₂₀H₂₇N₈O₅ [M+H]⁺: 459.2098, found: 459.210; Anal. calcd for C₂₀H₂₆N₈O₅: C, 52.38; H, 5.72; N, 24.44%; Found: C, 52.36; H, 5.77; N, 24.42%.

(1-(3-(cyclobutylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl) methyl 2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7 (6H)-yl)acetate (24). Yield: 44%; white solid; mp: 102–104°C; $R_f = 0.74$, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3445, 3288, 3131, 3097, 2958, 1740, 1705, 1651, 1638, 1553, 1471, 1456, 1383, 1376, 1237, 1223, 1058, 1032, 977, 954, 761, 751; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.59 (s, 1H), 5.84 (d, J = 7.2 Hz, 1H), 5.34 (s, 2H), 5.08 (s, 2H), 4.67 (t, J = 6.4 Hz, 2H), 4.35–4.30 (m, 1H), 3.60 (s, 3H), 3.38 (s, 3H), 2.77 (t, J = 6.0 Hz, 2H), 2.29–2.28 (m, 2H), 1.80–1.70 (m, 4H); ¹³C NMR (400 MHz, CDCl₃): δ 167.92, 166.89, 155.36, 151.59, 148.67, 141.82, 125.19, 59.11, 47.31, 46.21, 44.80, 36.36, 30.99, 29.87, 27.97, 15.07; m/z (ES)⁺: 445 [C₁₉H₂₄N₈O₅+H]⁺; HRMS (ESI): calcd for C₁₉H₂₅N₈O₅ [M+H]⁺: 445.1942, found: 445.1945; Anal. calcd for C₁₉H₂₄N₈O₅: C, 51.35; H, 5.44; N, 25.21%; Found: C, 51.38; H, 5.46; N, 25.20%.

(1-(3-morpholino-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)acetate (25). Yield: 68%; yellow solid; mp: 122–124°C; $R_f = 0.70$, mobile phase: MeOH/CH₂Cl₂–1:9; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.60 (s, 1H), 5.34 (s, 2H), 5.10 (s, 2H), 4.72 (t, J = 6.0 Hz, 2H), 3.65–3.63 (m, 4H), 3.62–3.59 (m, 5H), 3.42–3.40 (m, 2H), 3.38 (s, 3H), 2.98 (t, J = 6.4 Hz, 2H); ¹³C NMR (400 MHz, CDCl₃): δ 167.81, 166.93, 155.34, 151.65, 148.60, 141.79, 125.59, 107.14, 66.67, 66.33, 59.12, 47.26, 45.91, 45.61, 42.04, 33.11, 29.84, 27.91; *m/z* (ES-API)⁺: 461.0 [C₁₉H₂₄N₈O₆+H]⁺; HRMS (ESI): calcd for C₁₉H₂₅N₈O₆ [M+H]⁺: 461.1897, found: 461.1897; Anal. calcd for C₁₉H₂₄N₈O₆: C, 49.56; H, 5.25; N, 24.34%; Found: C, 49.54; H, 5.27; N, 24.36%.

(1-(3-(cyclohexylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoate (26). Yield: 73%; off-white solid; $R_f = 0.79$, mobile phase: MeOH/CH₂Cl₂–1:9; mp: 162–164°C; IR (KBr cm⁻¹): 3307, 3141, 3129, 2931, 2854, 1740, 1705, 1660, 1633, 1547, 1471, 1454, 1431, 1381, 1296, 1229, 1202, 1097, 1055, 1036, 998, 976, 763, 751; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (s, 2H), 5.56 (q, *J* = 7.6 Hz, 1H), 5.43 (d, *J* = 7.6 Hz, 1H), 5.31 (s, 2H), 4.67 (t, *J* = 6.0 Hz, 2H), 3.74–3.67 (m, 1H), 3.60 (s, 3H), 3.37 (s, 3H), 2.76 (t, *J* = 6.4 Hz, 2H), 1.86–1.80 (m, 5H), 1.69–1.57 (m, 4H), 1.38–1.25 (m, 2H), 1.17–0.99 (m, 2H); *m/z* (ES)⁺: 487 [C₂₂H₃₀N₈O₅+H]⁺; HRMS (ESI): calcd for C₁₂H₃₁N₈O₅ [M+H]⁺: 487.2387, found: 487.2416; Anal. calcd for C₂₂H₃₀N₈O₅: C, 54.31; H, 6.22; N, 23.03%; Found: C, 54.35; H, 6.24; N, 23.09%.

(1-(3-(cyclopentylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoate (27). Yield: 62%; white solid; mp: 160–162°C; R_f = 0.76, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3303, 3141, 3101, 2955, 2873, 1741, 1705, 1654, 1549, 1470, 1454, 1430, 1383, 1299, 1227, 1211, 1058, 1036, 1000, 973, 957, 762, 751; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (s, 2H), 5.59–5.51 (m, 2H), 5.31 (s, 2H), 4.67 (t, *J* = 6.0 Hz, 2H), 4.16–4.11 (m, 1H), 3.60 (s, 3H), 3.37 (s, 3H), 2.76 (t, *J* = 6.4 Hz, 2H), 1.94–1.90 (m, 2H), 1.83 (d, *J* = 7.6 Hz, 3H), 1.63–1.55 (m, 4H), 1.30–1.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.9, 170.1, 156.8, 155.3, 152.3, 150.2, 143.6, 143.1, 118.0, 105.3, 55.7, 54.5, 50.6, 47.1, 34.7, 31.3, 30.1, 28.4, 26.2, 18.3; *m/z* (ES)⁺: 473 [C₂₁H₂₈N₈O₅+H]⁺; HRMS (ESI): calcd for C₂₁H₂₉N₈O₅ [M+H]⁺: 473.2260, found: 473.2255; Anal. calcd for C₂₁H₂₈N₈O₅: C, 53.38; H, 5.97; N, 23.72%; Found: C, 53.41; H, 5.93; N, 23.70%.

(1-(3-(cyclobutylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) propanoate (28). Yield: 66%; white solid; mp: 60–62°C; R_f = 0.75, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3301, 3140, 3116, 2967, 2949, 1738, 1702, 1665, 1645, 1546, 1471, 1455, 1427, 1295, 1244, 1232, 1198, 1000, 945, 930, 763, 749; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 1H), 7.70 (s, 1H), 5.73 (brs, 1H), 5.56 (q, *J* = 7.2 Hz, 1H), 5.30 (s, 2H), 4.66 (t, *J* = 6.4 Hz, 2H), 4.35–4.29 (m, 1H), 3.60 (s, 3H), 3.37 (s, 3H), 2.76 (t, *J* = 6.0 Hz, 2H), 2.32–2.25 (m, 2H), 1.83 (d, *J* = 7.6 Hz, 3H), 1.80–1.64 (m, 4H); *m/z* (ES)⁺: 459.25 [C₂₀H₂₆N₈O₅+H]⁺; HRMS (ESI): calcd for C₂₀H₂₇N₈O₅ [M+H]⁺: 459.2104, found: 459.2103; Anal. calcd for C₂₀H₂₆N₈O₅: C, 52.39; H, 5.72; N, 24.44%; Found: C, 52.42; H, 5.76; N, 24.48%.

(1-(3-(cyclopropylamino)-3-oxopropyl)-1H-1,2,3-triazol-4-yl) methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) propanoate (29). Yield: 52%; off-white solid; mp: 118–120°C; $R_f = 0.74$, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3444, 3263, 3146, 3116, 2955, 1753, 1701, 1666, 1652, 1547, 1470, 1456, 1430, 1384, 1298, 1230, 1192, 1031, 998, 953, 751; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.74 (s, 1H), 6.06 (brs, 1H), 5.54 (q, J = 7.6 Hz, 1H), 5.30 (s, 2H), 4.68 (t, J = 6.0 Hz, 2H), 3.60 (s, 3H), 3.36 (m, 3H), 2.76 (t, J =Hz, 2H), 2.65–2.64 (m, 1H), 1.84 (d, J = 7.6 Hz, 3H), 0.73 (q, J = 5.6 Hz, 2H), 0.42 (q, J = 1.6 Hz, 2H); ¹³C NMR (400 MHz, CDCl₃): δ 170.48, 169.55, 155.16, 151.49, 148.81, 141.63, 139.87, 125.21, 106.80, 59.04, 54.84, 46.19, 36.24, 29.82, 28.0, 22.61, 17.85, 6.46, 6.44; m/z (ES)⁺: 445.15 [C₁₉H₂₄N₈O₅+H]⁺; HRMS (ESI): calcd for C₁₉H₂₅N₈O₅ [M+H]⁺: 445.1942, found: 445.1945; Anal. calcd for C₁₉H₂₄N₈O₅: C, 51.35; H, 5.44; N, 25.21%; Found: C, 51.32; H, 5.44; N, 25.24%.

(1-(3-morpholino-3-oxopropyl)-1H-1,2,3-triazol-4-yl) methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)yl)propanoate (30). Yield: 85%; off-white solid; $R_f = 0.71$, mobile phase: MeOH/CH₂Cl₂-1:9; mp: 68-70°C; IR (KBr cm⁻¹): 3445, 3132, 2960, 2927, 2855, 1748, 1703, 1660, 1652, 1541, 1472, 1456, 1299, 1272, 1234, 1197, 1113, 1037, 1027, 997, 763, 749; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.72 (s, 1H), 5.59 (q, J = 7.6 Hz, 1H), 5.31 (s, 2H), 4.71 (t, J = 6.4 Hz, 2H), 3.65-3.58 (m, 9H), 3.41-3.37 (m, 5H), 2.97 (t, J = 6.4 Hz, 2H), 1.84 (d, J = 7.6 Hz, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 169.59, 167.77, 155.07, 151.45, 148.65, 141.41, 139.83, 125.46, 106.72, 66.58, 66.26, 59.07, 54.72, 45.84, 45.54, 41.96, 33.03, 29.75, 27.90, 17.86; m/z (MM-ES+APCl)⁺: 475.1 [C₂₀H₂₆N₈O₆+H]⁺; HRMS (ESI): calcd for C₂₀H₂₇N₈O₆ [M+H]⁺: 475.2053, found: 475.2064; Anal. calcd for C₂₀H₂₆N₈O₆: C, 50.63; H, 5.52; N, 23.62%; Found: C, 50.66; H, 5.50; N, 23.64%.

(1-(3-(4-ethylpiperazin-1-yl)-3-oxopropyl)-1H-1,2,3-triazol-4-yl) methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl) propanoate (31). Yield: 66%; off-white solid; mp: 68–70°C; R_f = 0.67, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3422, 2952, 1700, 1654, 1547, 1473, 1456, 1407, 1365, 1276, 1237, 1129, 1028, 1006, 930, 879, 825, 953, 764, 748; ¹H

NMR (400 MHz, CDCl₃): δ 7.75–7.67 (m, 2H), 5.35 (q, *J* = 7.2 Hz, 1H), 5.30 (s, 2H), 4.67 (t, *J* = 5.6 Hz, 2H), 3.78–3.72 (m, 2H), 3.59–3.55 (m, 5H), 3.37–3.0 (m, 3H), 2.98–2.94 (m, 2H), 2.73–2.63 (m, 6H), 1.80 (d, *J* = 7.6 Hz, 3H), 1.19–1.15 (m, 3H); ¹³C NMR (400 MHz, CDCl₃): δ 169.64, 167.87, 155.15, 151.63, 148.56, 141.50, 139.87, 125.47, 107.18, 59.11, 56.66, 56.08, 54.77, 45.91, 45.86, 43.48, 39.91, 32.98, 29.72, 27.84, 18.21, 10.13; *m/z* (ES)⁺: 502.23 [C₂₂H₃₁N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₂H₃₂N₉O₅ [M+H]⁺: 502.2526, found: 502.2526; Anal. calcd for C₂₂H₃₁N₉O₅: C, 52.68; H, 6.23; N, 25.13%; Found: C, 52.62; H, 6.28; N, 25.17%.

(1-(2-([2,3'-bipyridin]-5-ylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)acetate (32). Yield: 73%; off-white solid; mp: compound melting starts at 200°C and completely melts at 218°C; R_f = 0.44, mobile phase: MeOH/CH₂Cl₂-1:9; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.84 (s, 1H), 9.23 (s, 1H), 8.87 (s, 1H), 8.60 (d, *J* = 4.0 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.24 (s, 1H), 8.17–8.15 (m, 1H), 8.07–8.05 (m, 2H), 7.51–7.50 (m, 1H), 5.43 (s, 2H), 5.30 (s, 2H), 5.24 (s, 2H), 3.45 (s, 3H), 3.21 (s, 3H); *m/z* (ES)⁺: 531 [C₂₄H₂₂N₁₀O₅+H]⁺; HRMS (ESI): calcd for C₂₄H₂₃N₁₀O₅ [M+H]⁺: 531.1852, found: 531.1857; Anal. calcd for C₂₄H₂₂N₁₀O₅: C, 54.34; H, 4.18; N, 26.40%; Found: C, 54.40; H, 4.25; N, 26.34%.

(1-(2-oxo-2-((4-(pyridin-2-yl)phenyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - **1H-purin-7(6H)-yl)acetate (33).** Yield: 76%; off-white solid; mp: 198–200°C; $R_f = 0.48$, mobile phase: MeOH/CH₂Cl₂-1:9; IR (KBr cm⁻¹): 3326, 3115, 2928, 2850, 1743, 1705, 1661, 1626, 1572, 1540, 1469, 1434, 1405, 1376, 1312, 1290, 1244, 1227, 1210, 1088, 1053, 1030, 977, 955, 783, 761, 748; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.62 (s, 1H), 8.63 (d, *J* = 4.4 Hz, 1H), 8.23 (s, 1H), 8.09–8.07 (m, 3H), 7.93–7.91 (m, 1H), 7.87–7.83 (m, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.32–7.29 (m, 1H), 5.39 (s, 2H), 5.29 (s, 2H), 5.24 (s, 2H), 3.45 (s, 3H), 3.21 (s, 3H); ¹³C NMR (400 MHz, DMSO-*d*₆): δ 168.0, 164.72, 154.88, 151.45, 149.90, 148.45, 143.64, 141.39, 139.66, 137.62, 134.41, 127.59, 127.29, 120.12, 119.66, 106.77, 58.85, 52.72, 47.53, 29.95, 27.92; *m/z* (ES)⁺: 530 [C₂₅H₂₃N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₅H₂₄N₉O₅ [M+H]⁺: 530.190, found: 530.1901; Anal. calcd for C₂₅H₂₃N₉O₅: C, 56.71; H, 4.38; N, 23.81%; Found: C, 56.78; H, 4.42; N, 23.79%.

(1-(2-oxo-2-((4-(pyridin-3-yl)phenyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - **1H-purin-7(6H)-yl)acetate (34).** Yield: 63%; off-white solid; mp: compound melting starts at 240°C and completely melts at 250°C; R_f = 0.47 mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3434, 3327, 3115, 2927, 2850, 1742, 1705, 1697, 1671, 1626, 1573, 1545, 1475, 1455, 1433, 1382, 1320, 1290, 1243, 1230, 1209, 1088, 1062, 1030, 977, 951, 783, 761, 747, 712; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.61 (s, 1H), 8.89 (brs, 1H), 8.54 (brs, 1H), 8.23 (s, 1H), 8.07–8.04 (m, 2H), 7.75–7.70 (m, 4H), 7.48–7.45 (m, 1H), 5.39 (s, 2H), 5.29 (s, 2H), 5.24 (s, 2H), 3.45 (s, 3H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 164.5, 157.4, 153.3, 150.3, 148.1, 146.9, 146.3, 144.3, 142.9, 142.4, 140.1, 133.1, 127.3, 123.3, 120.1, 114.7, 105.3, 50.5, 50.3, 29.9, 28.1; *m/z* (ES)⁺: 530 [C₂₅H₂₃N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₅H₂₄N₉O₅ [M+H]⁺: 530.1894, found: 530.1921; Anal. calcd for C₂₅H₂₃N₉O₅: C, 56.72; H, 4.38; N, 23.80%; Found: C, 56.62; H, 4.33; N, 23.89%.

(1-(2-([2,3'-bipyridin]-5-ylamino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoate (35). Yield: 72%; gray colour solid; mp: compound melting starts at 90°C and completely melts at 102°C; R_f = 0.46, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3430, 2952, 1748, 1701, 1656, 1613, 1546, 1470, 1455, 1420, 1384, 1295, 1283, 1232, 1199, 1057, 1034, 998, 953, 848, 762, 749, 709; ¹H NMR (400 MHz, CDCl₃): δ 9.14 (s, 1H), 8.67–8.61 (m, 2H), 8.28–8.24 (m, 2H), 7.96 (s, 1H), 7.79–7.68 (m, 3H), 7.41–7.38 (m, 1H), 5.57 (q, *J* = 7.6 Hz, 1H), 5.41–5.25 (m, 4H), 3.58 (s, 3H), 3.22 (s, 3H), 1.87 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 168.2, 157.3, 154.5, 153.1, 150.3, 148.1, 147.4, 143.3, 141.4, 135.8, 134.6, 128.7, 128.0, 124.1, 120.3, 119.7, 104.9, 56.1, 49.3, 30.3, 26.9, 18.1; *m/z* (ES)⁺: 545 [C₂₅H₂₄N₁₀O₅+H]⁺; HRMS (ESI): calcd for C₂₅H₂₅N₁₀O₅ [M+H]⁺: 545.20, found: 545.2034; Anal. calcd for C₂₅H₂₄N₁₀O₅: C, 55.14; H, 4.43; N, 25.72%; Found: C, 55.17; H, 4.40; N, 25.78%.

(1-(2-oxo-2-((4-(pyridin-2-yl)phenyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)propanoate (36). Yield: 65%; off-white solid; mp: 120–122°C; R_f = 0.46, mobile phase: MeOH/CH₂Cl₂-1:9; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.57 (s, 1H), 8.85 (brs, 1H), 8.51 (d, *J* = 3.2 Hz, 1H), 8.18 (s, 1H), 8.14 (s, 1H), 8.04–8.02 (m, 1H), 7.72–7.67 (m, 4H), 7.45–7.42 (m, 1H), 5.62 (q, *J* = 6.8 Hz, 1H) 5.37 (s, 2H), 5.25 (s, 2H), 3.44 (s, 3H), 3.20 (s, 3H), 1.75 (d, *J* = 7.2 Hz, 3H); *m/z* (ES)⁺: 544 [C₂₆H₂₅N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₆H₂₆N₉O₅ [M+H]⁺: 544.2051, found: 544.2085; Anal. calcd for C₂₆H₂₅N₉O₅: C, 57.45; H, 4.64; N, 23.18%; Found: C, 57.54; H, 4.66; N, 23.27%.

(1-(2-oxo-2-((4-(pyridin-3-yl)phenyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - **1H-purin-7(6H)-yl)propanoate (37).** Yield: 77%; off-white solid; mp: 132–134°C; R_f = 0.47, mobile phase: MeOH/CH₂Cl₂–1:9; ¹H NMR (400 MHz, DMSO- d_6): δ 10.60 (s, 1H), 8.88 (brs, 1H), 8.53 (d, J = 8.8 Hz, 1H), 8.21 (s, 1H), 8.17 (s, 1H), 8.06–8.04 (m, 1H), 7.74–7.69 (m, 4H), 7.47–7.44 (m, 1H), 5.62 (q, J = 7.2 Hz, 1H) 5.37 (s, 2H), 5.25 (s, 2H), 3.44 (s, 3H), 3.20 (s, 3H),

1.75 (d, J = 7.2 Hz, 3H); m/z (ES)⁺: 544 [C₂₆H₂₅N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₆H₂₆N₉O₅ [M+H]⁺: 544.2051, found: 544.2076; Anal. calcd for C₂₆H₂₅N₉O₅: C, 57.44; H, 4.64; N, 23.19%; Found: C, 57.49; H, 4.74; N, 23.20%.

(1-(2-oxo-2-((4-(pyrimidin-5-yl)phenyl)amino)ethyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro -**1H-purin-7(6H)-yl)propanoate (38).** Yield: 72%; yellow solid; mp: 118–120°C; R_f = 0.43, mobile phase: MeOH/CH₂Cl₂–1:9; IR (KBr cm⁻¹): 3436, 3114, 2951, 1748, 1701, 1655, 1604, 1545, 1471, 1454, 1416, 1384, 1295, 1234, 1197, 1055, 1035, 1000, 951, 839, 762, 748, 724; ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 8.91 (s, 1H), 8.35 (s, 1H), 7.94 (s, 1H), 7.68–7.65 (m, 3H), 7.52 (d, *J* = 4.0 Hz, 2H), 5.43–5.19 (m, 5H), 3.58 (s, 3H), 3.25 (s, 3H), 1.86 (d, *J* = 7.2 Hz, 3H); *m/z* (ES)⁺: 545 [C₂₅H₂₄N₁₀O₅+H]⁺; HRMS (ESI): calcd for C₂₅H₂₅N₁₀O₅ [M+H]⁺: 545.20, found: 545.2015; Anal. calcd for C₂₅H₂₄N₁₀O₅ C, 55.15; H, 4.44; N, 25.72%; Found: C, 55.28; H, 4.41; N, 25.85%.

(1-(3-oxo-3-((4-(pyridin-2-yl)phenyl)amino)propyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - 1H-purin-7(6H)-yl)acetate (39). Yield: 55%; off-white solid; mp: compound melting starts at 210°C and completely melts at 220°C; $R_f = 0.45$, mobile phase: MeOH/CH₂Cl₂-1:9; IR (KBr cm⁻¹): 3443, 2956, 1748, 1699, 1659, 1551, 1531, 1478, 1455, 1408, 1383, 1291, 1230, 1205, 1058, 1031, 978, 958, 762, 748; ¹H NMR (400 MHz, CDCl₃): δ 9.19 (brs, 2H), 8.73 (brs, 1H), 8.58–8.53 (m, 1H), 8.35 (d, J = 6.8 Hz, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.81 (s, 1H), 7.55 (s, 1H), 7.51 (s, 1H), 7.48–7.45 (m, 1H), 5.33 (s, 2H), 5.11 (s, 2H), 4.84 (t, J = 5.6 Hz, 2H), 3.60 (s, 3H), 3.39 (s, 3H), 3.26–3.23 (m, 2H); m/z (ES)⁺: 544 [C₂₆H₂₅N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₆H₂₆N₉O₅ [M+H]⁺: 544.2056, found: 544.2085; Anal. calcd for C₂₆H₂₅N₉O₅: C, 57.45; H, 4.64; N, 23.19%; Found: C, 57.38; H, 4.70; N, 23.20%.

(1-(3-oxo-3-((6-phenylpyridazin-3-yl)amino)propyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - 1H-purin-7(6H)-yl)acetate (40). Yield: 56%; off-white solid; $R_f = 0.40$, mobile phase: MeOH/CH₂Cl₂-1:9; ¹H NMR (400 MHz, DMSO- d_6): δ 11.33 (brs, 1H), 8.32–8.34 (m, 1H), 8.23 (d, J = 9.6 Hz, 1H), 8.18 (s, 1H), 8.08 (d, J = 8.4 Hz, 2H), 8.04 (s, 1H), 7.53–7.50 (m, 3H), 5.24 (s, 2H), 5.20 (s, 2H), 4.70 (t, J = 6.0 Hz, 2H), 3.43 (s, 3H), 3.20 (s, 3H), 3.17 (t, J = 6.8 Hz, 2H); m/z (ES)⁺: 545 [C₂₅H₂₄N₁₀O₅+H]⁺; HRMS (ESI): calcd for C₂₅H₂₅N₁₀O₅ [M+H]⁺: 545.2003, found: 545.2034; Anal. calcd for C₂₅H₂₄N₁₀O₅: C, 55.14; H, 4.44; N, 25.72%; Found: C, 55.20; H, 4.47; N, 25.64%.

(1-(3-oxo-3-((4-(pyridin-3-yl)phenyl)amino)propyl)-1H-1,2,3-triazol-4-yl)methyl-2-(1,3-dimethyl-2,6-dioxo-2,3-dihydro - 1H-purin-7(6H)-yl)propanoate (41). Yield: 76%; off-white solid; mp: compound melting starts at 92°C and completely melts at 100°C; R_f = 0.43, mobile phase: MeOH/CH₂Cl₂-1:9; ¹H NMR (400 MHz, CDCl₃): δ 8.82 (brs, 1H), 8.59 (brs, 1H), 8.02–7.99 (m, 2H), 7.77 (s, 1H), 7.69 (s, 1H), 7.64–7.62 (m, 2H), 7.54–7.48 (m, 3H), 5.50 (q, *J* = 7.6 Hz, 1H), 5.30 (s, 2H), 4.78 (t, *J* = 6.0 Hz, 2H), 3.58 (s, 3H), 3.36 (s, 3H), 3.08 (t, *J* = 6.0 Hz, 2H), 1.79 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.9, 169.3, 156.7, 154.2, 150.2, 148.3, 146.2, 142.6, 142.3, 140.1, 133.2, 129.3, 124.1, 117.0, 105.3, 56.1, 49.2, 47.3, 33.7, 30.1, 27.6, 18.1; *m/z* (ES)⁺: 558 [C₂₇H₂₇N₉O₅+H]⁺; HRMS (ESI): calcd for C₂₇H₂₈N₉O₅ [M + H]⁺: 558.2207, found: 558.2228; Anal. calcd for C₂₇H₂₇N₉O₅: C, 58.16; H, 4.88; N, 22.61%; Found: C, 58.22; H, 4.89; N, 22.76%.

Biological evolution

Anticancer assay

The anticancer activity of the compounds was determined using MTT assay,¹ 1× 10⁴ cells/well were seeded in 200 μ L DMEM, supplemented with 10% FBS in each well of 96-well microculture plates and incubated for 24 hours at 37 °C in a CO₂ incubator. Compounds, diluted to the desired concentrations in culture medium, were added to the wells with respective vehicle control. After 48 hours of incubation, 10 μ L MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (5 mg/mL) was added to each well and the plates were further incubated for 4 hours. Then the supernatant from each well was carefully removed, formazan crystals were dissolved in 100 μ L of DMSO and absorbance at 540 nm wavelength was recorded. The results were represented, from the percentage of cytotoxicity the IC₅₀ values are performed in triplicate and presented in the Table 1 & 2.

Compound

R ₁	R ₂	No.	A549 (Lung)	HT-29 (Colon)	MCF-7 (Breast)	A375 (Melanoma)
Н	Cyclohexyl	22	1.40 ± 0.09	52.3±1.20	2.20±0.32	2.51±0.58
Н	Cyclopentyl	23	4.70±0.14	15.4±1.29	12.8±0.33	60.8±4.61
Н	Cyclobutyl	24	5.24±0.49	19.2±2.81	9.18±0.99	61.2±3.51
Н	Morpholine	25	7.24±1.02	38.2±3.22	18.2±1.81	58.2±1.90
CH_3	Cyclohexyl	26	34.6±2.49	21.4±0.60	7.54±1.36	3.92±0.59
CH_3	Cyclopentyl	27	1.21±0.16	2.30±0.16	2.31±0.41	63.2±2.30
CH_3	Cyclobutyl	28	3.54±0.44	55.2±2.76	6.33±1.06	8.52±0.34
CH_3	Cyclopropyl	29	10.2±0.68	14.8±0.34	16.8±0.85	68.2±2.71
CH_3	Morpholine	30	5.82±0.39	6.2±0.59	5.92±0.30	24.8±1.83
CH₃	N-Ethylpiperazine	31	6.82±0.41	24.2±1.94	38.2±2.62	62.3±4.30
Combretastatin-A4			0.11±0.19	0.93±0.82	0.18±0.5	0.21±0.62

All the assays were performed in triplicate, $\mathrm{IC}_{50}\, values$ were reported as mean± SD

 Table 2 Anticancer activity (IC₅₀) of biphenyl amide analogues (32–41)

Compou	und					
R_1	R_4	No.	A549 (Lung)	HT-29 (Colon)	MCF-7 (Breast)	A375 (Melanoma)
Н		32	2.12 ± 0.26	54.3±2.10	53.8±3.5	3.80±0.31
н		33	4.70±0.35	56.8±2.36	8.41±0.63	9.34±0.55
Н	$- \hspace{-1.5cm} \stackrel{\sim}{\longrightarrow} -1.5cm$	34	53.4±2.02	17.3±0.43	2.40±0.17	3.62±0.34
CH₃		35	6.33±0.18	50.2±0.90	62.8±3.27	2.80±0.29
CH₃	$-\!$	36	4.90±0.09	2.90±0.73	2.71±0.44	58.2±1.58
CH_3		37	48.2±0.26	27.5±2.06	5.91±0.28	10.31±0.25

All the assays were performed in triplicate, IC_{50} values were reported as mean \pm SD

Docking studies

Protein-ligand docking studies are one of the main challenging aspects in the computer aided drug design. Docking studies was performed to the scheme of compounds (**22–41**) with the selective pharmacologically important drug targets for lung, breast, colon and melanoma cancers using docking module implemented in MOE 2010.12 (Molecular Operating Environment).² The drug targets namely epidermal growth factor receptor (EGFR) (PDB id: 4HJO), Human epidermal growth factor receptor 2 (HER2) (PDB id: 3PPO), Vascular endothelial growth factor receptor 2 (VEGFR2) (PDB id: 4AG8), Human placental Aromatase Cytochrome P 450 (PDB id: 4EQM), were retrieved from the protein databank (www.rcsb.org). Initially all the structures were protonated with addition of polar hydrogens followed by energy minimization with MMFF94x force field in order to get stabilized conformer of the protein. As per the literature the inhibitor binding sites were identified and highlighted with site finder module implemented in MOE software and docking was carried out with default parameters *i.e.*, placement: triangle matcher, Recoring 1: London dG, Refinement: Force field, and maximum of 10 conformations of each compound were allowed to save in a separate database file in .mdb format.

Binding energy and Binding affinity calculations

The binding energy and binding affinity of docked complexes were calculated using molecular mechanics generalized Born interactions/volume integral (MM-GB/VI) implicit solvent method in MOE (Labute, 2008).³ Non-bonded interaction energies between the receptor proteins and ligand molecule include van der Waals, coulomb and generalized born implicit solvent interactions energies are categorized as Born interaction energy. The binding affinity was calculated for each compound against various target proteins and reported in unit of Kcal/Mol.

References:

- 1 A. Kamal, A. Mallareddy, P. Suresh, V. L. Nayak, R. V. Shetti, N. S. Rao, J. R. Tamboli, T. B. Shaik, M. V. Vishnuvardhan, S. Ramakrishna, *Eur. J. Med. Chem.*, 2012, **47**, 530–545.
- 2 MOE (2011) (Molecular Operating Environment 2011.10) Chemical Computing Group Inc., Montreal, QC, Canada
- 3 P. Labute, The generalized born/volume integral (GB/VI) implicit solvent model: estimation of free energy of hydration using London dispersion instead of atomic surface area. *J. Comput. Chem.*, 2008, 29, 1693–1698.

Toxicity risk assessment screening

Table 3. Toxicity risk assessment screening of compounds (22-41) computed with MOLINSPERATION and OSIRIS server.

Compound	cLogP	Solubilitiy	Druglikeness	Drugscore	Mutagenic	Tumorigenic	Irritant	Reproductive effect
22	-0.65	-2.17	-5.27	0.39	No	No	No	No
23	-1.24	-2.26	-3.08	0.42	No	No	No	No
24	-1.33	-1.66	-1.28	0.5	No	No	No	No
25	-1.97	-0.3	-1.39	0.48	No	No	No	No
26	-0.47	-5.39	-7.59	0.27	No	No	No	No
27	-0.81	-5.12	-5.3	0.29	No	No	No	No
28	-1.15	-4.85	-3.58	0.32	No	No	No	No
29	-1.49	-4.58	-2.53	0.36	No	No	No	No
30	-1.79	-3.52	-3.18	0.37	No	No	No	No
31	-1.27	-3.32	1.27	0.61	No	No	No	No
32	-1.2	-2.02	-0.61	0.47	No	No	No	No
33	-0.2	-2.82	-0.61	0.45	No	No	No	No
34	-0.29	-3.12	-0.25	0.47	No	No	No	No
35	-1.02	-5.24	-2.91	0.26	No	No	No	No
36	-0.02	-6.03	-2.94	0.23	No	No	No	No
37	-0.11	-6.34	-2.56	0.56	No	No	No	No
38	-0.67	-6.13	-3.09	0.22	No	No	No	No
39	0.25	-3.09	-0.5	0.44	No	No	No	No
40	-0.22	-3.16	-0.74	0.42	No	No	No	No
41	0.34	-6.61	-2.47	0.21	No	No	No	No

ADME properties

 Table 4. ADME properties of compounds (22-41) computed through MOE QSAR descriptor module.

Comp No	logP(o/w)	MW	TPSA	HBA	HBD	nRotB	Molar
Rule	<5	<500	<140	<10	<5	<10	Refractivity
22	-0.57	472.0	144.5	7	1	10.00	12.07
23	-1.21	444.1	153.3	7	2	10.00	11.13
24	-1.45	444.4	144.5	7	1	10.00	11.12
25	-2.78	460.0	144.9	8	0	9.00	11.31
26	0.13	486.2	147.7	7	2	10.00	12.51
27	-0.30	472.2	147.7	7	2	10.00	12.03
28	-0.74	459.0	147.7	7	2	10.00	11.56
29	-1.89	444.19	147.7	7	2	10.00	11.08
30	-2.07	474.2	148.2	8	1	9.00	11.75
31	-1.77	501.24	142.2	7	1	10.00	12.84
32	-1.53	530.18	170.3	9	1	10.00	13.63
33	-0.29	529.18	157.4	8	1	10.00	13.82
34	-0.25	529.18	157.4	8	1	10.00	13.82
35	-0.82	544.52	173.5	9	2	10.00	14.08
36	0.41	543.2	160.6	8	2	10.00	14.27
37	0.45	543.2	160.6	8	2	10.00	14.27
38	-1.69	544.19	173.5	9	2	10.00	14.08
39	-0.20	543.0	157.4	8	1	11.00	14.30
40	0.435	544.0	170	9	1	11.00	14.11
41	0.29	557.2	160.6	8	1	11.00	14.76

logP(o/w): Octanol-water partition coefficient.

TPSA: Topological polar surface area.

MW: Molecular weight.

HBA: Number of hydrogen-bond acceptors (O and N atoms).

HBD: Number of hydrogen-bond donors (HO and NH groups). nRotB: Number of rotatable bonds.

Docking studies supporting data

Table 5

Bonding Characterization, dock score and binding affinities of compounds (22-41) with various pharmacological targets involved in cell proliferation

S.	Compound	Dock Score	Binding energy	Binding	Bonding interaction	Bond	Bond
No	-	(S)	(kcal/mol)	affinity	-	length (Å)	type
	Epidermal grov	vth factor recep	otor (EGFR) (PDB id: 4	HJO)			
1	22	-12.85	-28.15	9.90	Lys721NZO	2.64	H-acc
2	23	-13.49	-23.43	9.70	Thr7270GH	1.99	H-don
					Tyr8450H0	2.18	H-acc
					Ala847NO	3.00	H-acc
3	24	-13.40	-33.60	9.94	Lys721NZO	2.43	H-acc
4	25	-11.66	-27.72	8.50	Lys721NZ0	2.44	H-acc
5	26	-13.30	-28.27	11.17	Gly850OH	1.57	H-don
					Arg817NEO	2.50	H-acc
6	27	-15.04	-26.07	11.11			
7	28	-12.69	-20.91	9.69	Asp8310DH	1.40	H-don
					Lys721NZO	2.82	H-acc
8	29	-13.06	-21.97	10.20	Gly850OH	2.14	H-acc
9	30	-15.33	-26.33	10.16	Tyr8450Н	1.89	H-don
					Lys721NZ0	2.53	H-acc
10	31	-14.01	-28.72	12.30	Arg817NEN	2.72	H-acc
11	32	-12.71	-38.93	10.67	Tyr8670HN	2.83	H-acc
12	33	-13.04	-26.53	10.48	Tyr8670HN	2.83	H-acc
13	34	-13.12	-33.31	8.75	Arg817NH0	2.55	H-acc
					Arg817NEO	2.68	H-acc
14	35	-16.8	-36.81	12.64	Asp8130DH	1.30	H-don
					Lys721NZ0	2.69	H-acc
					Arg817NEO	2.96	H-acc
15	36	-13.5	-28.64	11.48	Arg817NEN	2.73	H-acc
16	37	-14.8	-34.83	11.41	Asn8180DH	1.59	H-don
					Asp8310DH	2.12	H-don
					Arg817NH0	2.79	H-acc
17	38	-14.4	-30.02	10.89	Arg817NEO	2.53	H-acc
18	39	-15.85	-29.55	9.84	Tyr8450H0	2.21	H-acc
19	40	-14.26	-41.39	11.49	Ala847NO	2.72	H-acc
20	41	-12.89	-36.17	10.05	Asp8310DH	1.42	H-don
					Lys721NZ0	2.64	H-acc
	Human epiderr	mal growth fact	or receptor (HER2) (F	DB id: 3PP0)			
21	22	-15.42	-25.43	10.29	Thr8620G0	2.49	H-acc
					Asp863NN	2.82	H-acc
22	23	-14.11	-20.35	10.57	Ser7830GN	2.95	H-acc
23	24	-13.56	-20.82	9.44	Ser7830G0	3.00	H-acc
					Thr8620G0	2.84	H-acc
24	25	-13.16	-19.56	8.88			
25	26	-14.54	-33.3	10.61			
26	27	-15.23	-9.673	10.95	Asp8630H	1.55	H-don
					Ser7830GN	2.71	H-acc
27	28	-13.25	-19.10	9.28			
28	29	-13.56	-17.26	9.74	Asp8630H	1.48	H-don
					Ser5950GN	2.90	H-acc

S.	Compound	Dock Score	Binding energy	Binding	Bonding interaction	Bond	Bond
No	-	(S)	(kcal/mol)	affinity	_	length (Å)	type
				-			
29	30	-15.08	-12.08	10.88	Ser7830G0	2.72	H-don
					Thr7980G0	2.72	H-don
					Lys724NZO	2.94	H-acc
					Cys805NO	2.52	H-acc
30	31	-15.81	-13.90	12.21	Thr8620G0	2.73	H-acc
					Asp863NO	2.93	H-acc
31	32	-16.27	-16.86	10.68	Ser7830G0	2.55	H-acc
					Met801NN	2.76	H-acc
					Thr8620G0	2.39	H-acc
32	33	-15.36	-25.73	9.86	Met801N0	2.77	H-acc
					Cys805NO	2.90	H-acc
33	34	-14.68	-24.30	10.14	Lys724NZN	2.59	H-acc
					Ser7830G0	2.63	H-acc
					Thr8620G0	2.86	H-acc
					Thr7980G0	2.87	H-acc
34	35	-16.70	-20.10	13.18	Ser7830G0	2.59	H-don
					Thr7980G0	2.90	H-don
					Thr8620G0	2.79	H-don
					Lys736NZN	2.68	H-acc
35	36	-16.71	-25.52	14.10	Ser7830G0	2.66	H-don
					Thr7980G0	2.76	H-don
					Arg849NEN	2.89	H-acc
					Thr8620G0	2.86	H-acc
36	37	-16.56	-22.96	11.94	Lys724NZN	2.69	
37	38	-15.89	-30.71	12.79	Glu770OEH	1.31	H-don
					Asp8630DH	1.78	H-don
					Lys/53NZ0	2.72	H-acc
					Inr8620G0	2.49	H-acc
38	39	-13.78	-21.93	9.82			
39	40	-14.87	-28.17	10.12			
40	41	-16.52	-32.//	11.94	Lys/53NZN	2.81	H-acc
					Met801NN	2.89	H-acc
					Arg868NH0	2.77	H-acc
	Vascular endot	helial growth fa	actor receptor 2 (VEG	-R2) (PDB Id: 4AG8	5)	2.46	
41	22	-13.16	-23.08	10.08	Arg102/NH0	2.40	H-acc
41	23	-12.29	-22.30	9.59	ASp10460DH	1.39	H-don
						2.81	H-acc
12	24	14 50	44.05	0.62	Asp1046N0	2.63	H-acc
43	24	-11.59	-14.05	0.03		265	L 200
44	25	-13.92	-20.10	10.24		2.05	
45	26	14.00	10.10	10.49	Asp1046N0	2.77	
45	20	15.04	20.38	10.40	Asp1040100	2.72	
40	2/	-15.04	-20.20	10.55	Asp10401v0	2.50	H-acc
47	20	-12.02	-15.50	10.34	Δερ10400	2.30	H-don
40	23	-13.92	-20.40	10.12	H	2.49	H-acc
					Δrg1027ΝΗ Ο	2.02	H-acc
					Asp1046NN	2.00	i i-all
10	30	-16.11	-18 25	11 56	Cvs919N	3 38	H-acc
		10.11	10.23	11.50	Asp1046N0	2.72	H-acc
50	31	-14,29	-19.79	11.03	Lvs868N7N	2.95	H-arc
51	32	-14.47	-33.73	10.36	Asp1027NH0	2.81	H-acc
52	33	-14.24	-24.97	10.44			
53	34	-14.04	-27.98	10.67	Glu8550EH	1.89	H-don
	1			1			

S.	Compound	Dock Score	Binding energy	Binding	Bonding interaction	Bond	Bond
No		(S)	(kcal/mol)	affinity		length (Å)	type
					Asn923NN	2.59	H-acc
					Asp1046NO	3.03	H-acc
54	35	-16.32	-29.80	11.79	Asp10460D	1.31	H-don
					Н	2.66	H-acc
					Asp1046N		
					N		
55	36	-15.38	-26.88	11.73	Lys868NZN	2.99	H-acc
					Lys868NZO	2.97	H-acc
56	37	-15.66	-25.32	12.68	Asp1046N	2.68	H-acc
					N		
57	38	-14.33	-32.87	10.99	Asp10460D	1.39	H-don
					Н	2.42	H-acc
					Asp1046NO		
58	39	-14.50	-33.70	10.55	Asp10460H	1.83	H-don
59	40	-15.53	-29.27	10.63	Arg1027NH0	2.74	H-acc
60	41	-14.93	-35.95	12.01	Glu885OEH	1.62	H-don
					Asp1046NO	3.02	H-acc
	Human placent	tal Aromatase, (Cytochrome P 450 (P	DB id: 4EQM)	1	1	
61	22	-11.81	-24.32	8.76	Arg115NHN	2.57	H-acc
62	23	-13.68	-24.24	9.44	Arg115NHN	2.86	H-acc
					Arg115NH0	2.53	H-acc
					Gly439NO	2.71	H-acc
63	24	-11.49	-23.28	8.85			
64	25	-13.17	-16.69	9.58	Ala438NN	2.81	H-acc
65	26	-13.64	-22.60	9.79	Arg115NH0	2.50	H-acc
66	27	-13.42	-33.65	9.40	Thr3100G0	2.46	H-don
					Met374N0	2.90	H-acc
67	28	-12.61	-24.31	8.82	Phe4300H	1.79	H-don
68	29	-12.92	-25.27	9.19	Thr3100GH	2.24	H-don
69	30	-14.13	-24.01	9.77	Arg115NH0	2.85	H-acc
					Met374NO	2.69	H-acc
70	31	-13.48	-15.54	10.50	Arg115NH0	2.75	H-acc
71	32	-14.34	-32.99	10.89			
72	33	-14.14	-34.61	11.32	Ser3140G0	2.48	H-acc
73	34	-15.81	-21.81	11.44	Arg115NEN	2.99	H-acc
					Ser1990GN	2.73	H-acc
					Ala438NO	2.91	H-acc
74	35	-16.49	-29.64	11.97	Thr3100G0	2.55	H-don
75	36	-15.13	-26.80	11.72	Thr3100G0	2.62	H-acc
76	37	-15.79	-9.17	10.77	Pro4290H	2.63	H-don
77	38	-15.24	-21.81	11.66	Arg115NH0	2.56	H-acc
					Gly439NO	2.95	H-acc
78	39	-16.58	-29.23	11.18	Thr3100GH	1.78	H-don
					Arg115NH0	2.29	H-acc
79	40	-14.09	-25.20	10.58	Thr3100GH	2.24	H-don
80	41	-15.07	-35.54	10.85	Arg115NH0	2.57	H-acc

Experimental Supporting Data

Fig-1: ¹H NMR spectrum of compound-22

Fig-2: ¹³C NMR spectrum of compound-22

Fig-3: IR spectrum of compound-22

Fig-4: HRMS spectrum of compound-22

Fig-5: ¹H NMR spectrum of compound-23

Fig-6: ¹³C NMR spectrum of compound-23

Fig-7: IR spectrum of compound-23

Fig-8: HRMS spectrum of compound-23

Fig-9: ¹H NMR spectrum of compound-24

Fig-10: ¹³C NMR spectrum of compound-24

Fig-11: IR spectrum of compound-24

Fig-12: HRMS spectrum of compound-24

Fig-13: ¹H NMR spectrum of compound-25

Fig-14: ¹³C NMR spectrum of compound-25

Fig-15: HRMS spectrum of compound-25

Fig-16: ¹H NMR spectrum of compound-26

Fig-17: IR spectrum of compound-26

Fig-18: HRMS spectrum of compound-26

Fig-19: ¹H NMR spectrum of compound-27

Fig-20: ¹³C NMR spectrum of compound-27

Fig-21: IR spectrum of compound-27

Fig-22: HRMS spectrum of compound-27

Fig-23: ¹H NMR spectrum of compound-28

Fig-24: IR spectrum of compound-28

Fig-25: HRMS spectrum of compound-28

Fig-27: ¹³C NMR spectrum of compound-29

Fig-28: IR spectrum of compound-29

Fig-29: HRMS spectrum of compound-29

Fig-30: ¹H NMR spectrum of compound-30

Fig-31: ¹³C NMR spectrum of compound-**30**

Fig-32: IR spectrum of compound-30

Fig-33: HRMS spectrum of compound-30

Fig-34: ¹H NMR spectrum of compound-31

Fig-35: ¹³C NMR spectrum of compound-**31**

Fig-36: IR spectrum of compound-31

Fig-37: HRMS spectrum of compound-31

Fig-38: ¹H NMR spectrum of compound-32

Fig-39: HRMS spectrum of compound-32

Fig-40: ¹H NMR spectrum of compound-33

Fig-41: ¹³C NMR spectrum of compound-33

Fig-42: IR spectrum of compound-33

National Centre for Mass Spectrometry CSIR-Indian Institute of Chemical Technology

Fig-43: HRMS spectrum of compound-33

Fig-44: ¹H NMR spectrum of compound-34

Fig-45: ¹³C NMR spectrum of compound-**34**

Fig-46: IR spectrum of compound-34

National Centre for Mass Spectrometry CSIR-Indian Institute of Chemical Technology

Fig-47: HRMS spectrum of compound-34

Fig-48: ¹H NMR spectrum of compound-35

Fig-49: ¹³C NMR spectrum of compound-**35**

Fig-50: IR spectrum of compound-35

Fig-51: HRMS spectrum of compound-35

Fig-52: ¹H NMR spectrum of compound-36

Fig-53: HRMS spectrum of compound-36

Fig-54: ¹H NMR spectrum of compound-37

National Centre for Mass Spectrometry CSIR-Indian Institute of Chemical Technology

18.5

C 26 H 26 O 5 N 9

4.68

544.20514

Fig-55: HRMS spectrum of compound-37

544.20769 12692146.0 100.00

Fig-56: ¹H NMR spectrum of compound-**38**

Fig-57: IR spectrum of compound-38

Fig-58: HRMS spectrum of compound-38

Fig-59: ¹H NMR spectrum of compound-**39**

Fig-60: IR spectrum of compound-39

Fig-61: HRMS spectrum of compound-39

Fig-62: ¹H NMR spectrum of compound-40

National Centre for Mass Spectrometry CSIR-Indian Institute of Chemical Technology

18.5

C 25 H 25 O 5 N 10

5.57

Fig-63: HRMS spectrum of compound-40

100.00

545.20039

545.20343 1800362.6

Fig-64:1H NMR spectrum of compound-41

Fig-65: ¹³C NMR spectrum of compound-41

National Centre for Mass Spectrometry CSIR-Indian Institute of Chemical Technology

Fig-66: HRMS spectrum of compound-41