Supporting Information File

Exploring inhibitor structural features required to engage the 216-loop of human parainfluenza virus type-3 Hemagglutinin-Neuraminidase

Ibrahim M. El-Deeb*, Patrice Guillon*, Larissa Dirr, and Mark von Itzstein*.

Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia

Page 2	Chemistry
Page 20	¹ H and ¹³ C NMR spectra of new intermediates and final products
Page 50	Computational Chemistry
C	
Page 51	Biological Screening
Page 51	References
- ugo 01	

Chemistry

General Synthetic Methods

Reagents and dry solvents purchased from commercial sources were used without further purification. Anhydrous reactions were carried out under an atmosphere of argon, using oven-dried glassware. Reactions were monitored using thin layer chromatography (TLC) on aluminium plates pre-coated with Silica Gel 60 F254 (E. Merck). Developed plates were observed under UV light at 254 nm and then visualized after application of a solution of H_2SO_4 in EtOH (5% v/v) and heating. Flash chromatography was performed on Silica Gel 60 (0.040-0.063mm) using distilled solvents. ¹H and ¹³C NMR spectra were recorded either at 300 and 75.5 MHz respectively on a BrukerAvance 300 MHz spectrometer or at 400 and 100 MHz respectively on a BrukerAvance 400 MHz spectrometer. Chemical shifts (δ) are reported in parts per million, relative to the residual solvent peak as internal reference [CDCl₃: 7.26 (s) for ¹H. 77.0 (t) for ¹³C; D₂O: 4.79 (s) for ¹H]. 2D COSY and HSQC experiments were run to support assignments. Lowresolution mass spectra (LRMS) were recorded, in electrospray ionization mode, on a BrukerDaltonics Esquire 3000 ESI spectrometer, using positive mode. High-resolution mass spectra (HRMS) were recorded for either the protected or deprotected final derivatives, and were carried out by the University of Queensland FTMS Facility on a BrukerDaltonics Apex III 4.7e Fourier Transform micrOTOF-Q70 MS or by Griffith University SmartWater Research Centre facility using an Agilent 1290 HPLC coupled to an Agilent 6530 QTOF fitted with a Jet Stream ESI source. Final deprotected sialic acid derivatives were purified by running through GracePureTM SPE C18-Aq 5000mg/20 mL using 2% acetonitrile/H₂O. The purities of all synthetic intermediates after chromatographic purification were judged to be >90% by ¹H and ¹³C NMR, while the purity of the reference compound 5 synthesised for screening purposes and of the new final products 9a-g, 11a-c, 13a-d and 16 was judged to be \geq 95%. Analytical HPLC was performed using U-XR-ODS-036 column, eluted at a flow rate of 0.26 mL/min. An isocratic elution was performed using 80% aq. MeOH containing 0.1% formic acid, and measurements were made at the wavelength corresponding to the maximum absorbance by each compound. The synthesis of reference inhibitor 5^1 and the intermediates 7 and 14^2 followed typical procedures to that mentioned in literature. The details of synthetic methods used and full characterization data of key intermediates and novel finals are reported here in the supplementary material.

Synthesis of Compounds 9a-g

^aReagents and conditions: (a) R-NCO, DMAP, DCM, rt, o/n, (8a, 87%, 8b, 96%; 8c, 90%; 8d, 84%; 8e, 89%; 8f, 91%; 8g, 82%) (b) NaOH, MeOH/H₂O (1:1), rt, o/n, (9a, 80%, 9b, 91%; 9c, 78%; 9d, 87%; 9e, 77%; 9f, 88%; 9g, 85%)

General Procedure for the synthesis of compounds 8a-g

To a solution of the amine 7 (60 mg, 0.14 mmol) and DMAP (cat.) in DCM (3 mL) was added the corresponding isocyanate (0.21 mmol) while stirring. The reaction mixture was stirred at rt o/n, then the solvent was removed under vacuum and the reside was purified by silica gel chromatography using the proper solvent system to yield the pure urea derivative **8a-g**.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(3-(4-methoxybenzyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (8a).

¹H NMR (300 MHz, CDCl₃): δ 1.56 (s, 3H, NAc), 1.99 (s, 3H, OAc), 2.00 (s, 3H, OAc), 2.04 (s, 3H, OAc), 3.72 (s, 3H, OCH₃), 3.79 (s, 3H, COOCH₃), 3.96 (m, 1H, H-5), 4.12-4.22 (m, 3H, H-9, CH₂), 4.36 (dd, *J* = 9.8, 2.4 Hz, 1H, H-6), 4.63 (dd, *J* = 12.5, 2.6 Hz, 1H, H-9'), 4.79 (t, *J* = 9.7 Hz, 1H, H-4), 5.28 (ddd, *J* = 7.6, 5.0, 2.6 Hz, 1H, H-8), 5.51 (dd, *J* = 5.3, 2.3 Hz, 1H, H-7), 5.65 (d, *J* = 9.2 Hz, 1H, Urea-N1-NH), 5.90 (d, *J* = 1.2 Hz, 1H, H-3), 6.19 (t, *J* = 5.1 Hz, 1H, Urea-N2-NH), 6.77 (d, *J* = 8.6 Hz, 2H, Ph-H-3', Ph-H-5'), 7.10 (d, *J* = 8.6 Hz, 2H, Ph-H-2', Ph-H-6'), 7.29 (d, *J* = 10.5 Hz, 1H, NHAc); ¹³C NMR (75 MHz, CDCl₃): δ 20.73, 20.83 (3 OCO<u>CH₃</u>), 22.85 (NHCO<u>CH₃</u>), 43.53 (Ph-CH₂), 48.12 (C-5), 49.05 (C-4), 52.44 (COO<u>CH₃</u>), 55.22 (Ph-O<u>CH₃</u>), 62.04 (C-9), 67.78 (C-7), 71.06 (C-8), 77.49 (C-6), 112.06 (C-3), 113.96 (Ph), 128.23 (Ph), 131.12 (Ph q carbon), 144.59 (C-2), 158.54 (Urea-CO), 158.77 (Ph q carbon), 161.73 (<u>CO</u>OCH₃), 169.92, 170.10, 170.57, 171.65 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₇H₃₅N₃O₁₂] (*m*/*z*): (+ve ion mode) 616.2 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-4-(3-(2-chlorophenyl)ureido)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (8b).

¹H NMR (300 MHz, CDCl₃): δ 1.59 (s, 3H, NAc), 2.00 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.12 (s, 3H, OAc), 3.83 (s, 3H, COOCH₃), 4.00–4.22 (m, 2H, H-5, H-9), 4.39 (dd, *J* = 9.9, 2.4 Hz, 1H, H-6), 4.64 (dd, *J* = 12.4, 2.8 Hz, 1H, H-6)

9'), 4.91 (ddd, *J* = 9.7, 2.5, 1.1 Hz, 1H, H-4), 5.33 (ddd, *J* = 6.8, 5.3, 2.7 Hz, 1H, H-8), 5.54 (dd, *J* = 5.4, 2.4 Hz, 1H, H-7), 6.00 (d, *J* = 2.4 Hz, 1H, H-3), 6.53 (d, *J* = 9.7 Hz, 1H, Urea-N1-NH), 6.94 (ddd, *J* = 8.1, 7.4, 1.5 Hz, 1H, Ph-H-4'), 7.21 (dd, *J* = 8.1, 1.5 Hz, 1H, Ph-H-3'), 7.25–7.40 (m, 2H, NHAc, Ph-H-5'), 7.79 (dd, *J* = 8.2, 1.5 Hz, 1H, Ph-H-6'), 8.02 (s, 1H, Urea-N2-NH); ¹³C NMR (75 MHz, CDCl₃): δ 20.81 (3 OCO<u>CH₃</u>), 22.71 (NHCO<u>CH₃</u>), 48.05 (C-5), 49.16 (C-4), 52.55 (COO<u>CH₃</u>), 62.09 (C-9), 67.96 (C-7), 70.89 (C-8), 77.73 (C-6), 111.42 (C-3), 123.22 (Ph), 124.26 (Ph), 124.40 (Ph q carbon), 127.63 (Ph), 129.25 (Ph), 135.27 (Ph q carbon), 145.03 (C-2), 156.12 (Urea-CO), 161.60 (<u>CO</u>OCH₃), 169.91, 169.99, 170.57, 172.13 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₅H₃₀ClN₃O₁₁] (*m/z*): (+ve ion mode) 606.1 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(3-(2-methoxybenzyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (8c).³

¹H NMR (300 MHz, CDCl₃): δ 1.75 (s, 3H, NAc), 2.02 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.10 (s, 3H, OAc), 3.64 (s, 3H, OCH₃), 3.80 (s, 3H, COOCH₃), 4.08–4.27 (m, 2H, H-5, H-9), 4.39 (dd, *J* = 9.9, 2.5 Hz, 1H, H-6), 4.65 (dd, *J* = 12.4, 2.7 Hz, 1H, H-9'), 4.86 (ddd, *J* = 9.4, 2.5, 1.1 Hz, 1H, H-4), 5.33 (ddd, *J* = 6.2, 5.2, 2.7 Hz, 1H, H-8), 5.58 (dd, *J* = 5.3, 2.5 Hz, 1H, H-7), 5.93 (d, *J* = 9.3 Hz, 1H, Urea-N1-NH), 5.99 (d, *J* = 2.4 Hz, 1H, H-3) 6.72 (m, 1H, Ph-H-5'), 6.82–7.06 (m, 3H, NHAc, Ph-H-3', Ph-H-4'), 7.47 (s, 1H, Urea-N2-NH), 7.93 (m, 1H, Ph-H-6'); ¹³C NMR (75 MHz, CDCl₃): δ 20.74, 20.79, 20.85 (3 OCO<u>CH₃</u>), 22.86 (NHCO<u>CH₃</u>), 47.67 (C-5), 49.17 (C-4), 52.45 (COO<u>CH₃</u>), 55.40 (Ph-O<u>CH₃</u>), 62.07 (C-9), 67.86 (C-7), 71.00 (C-8), 77.57 (C-6), 110.15 (Ph), 111.62 (C-3), 119.84 (Ph), 121.11 (Ph), 122.88 (Ph), 127.99 (Ph q carbon), 144.66 (C-2), 148.35 (Ph q carbon), 155.86 (Urea-CO), 161.78 (<u>CO</u>OCH₃), 169.98, 170.17, 170.61, 171.75 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₃N₃O₁₂] (*m*/*z*): (+ve ion mode) 602.2 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(3-(3-methoxyphenyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (8d).³

¹H NMR (300 MHz, CDCl₃): δ 1.77 (s, 3H, NAc), 2.00 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.09 (s, 3H, OAc), 3.66 (s, 3H, Ph-OCH₃), 3.82 (s, 3H, COOCH₃), 4.05 (q, *J* = 10.1 Hz, 1H, H-5), 4.17 (dd, *J* = 12.4, 7.2 Hz, 1H, H-9), 4.42 (dd, *J* = 10.2, 2.2 Hz, 1H, H-6), 4.66 (dd, *J* = 12.4, 2.6 Hz, 1H, H-9'), 4.91 (td, *J* = 9.8, 2.4 Hz, 1H, H-4), 5.32 (ddd, *J* = 7.4,

4.9, 2.6 Hz, 1H, H-8), 5.57 (dd, J = 5.2, 2.1 Hz, 1H, H-7), 5.95 (d, J = 2.2 Hz, 1H, H-3), 6.02 (d, J = 9.7 Hz, 1H, Urea-N1-NH), 6.52 (dd, J = 8.3, 2.4 Hz, 1H, Ph-H-4'), 6.74 (t, J = 2.2 Hz, 1H, Ph-H-2'), 6.85 (dd, J = 8.0, 2.1 Hz, 1H, Ph-H-6'), 7.15 (t, J = 8.1 Hz, 1H, Ph-H-5'), 7.51 (d, J = 10.0 Hz, 1H, NHAc), 8.25 (s, 1H, Urea-N2-NH); ¹³C NMR (75 MHz, CDCl₃): δ 20.73, 20.77, 20.82 (3 OCO<u>CH₃</u>), 23.08 (NHCO<u>CH₃</u>), 48.19 (C-5), 49.04 (C-4), 52.55 (COO<u>CH₃</u>), 55.04 (Ph-O<u>CH₃</u>), 62.15 (C-9), 68.02 (C-7), 71.10 (C-8), 77.61 (C-6), 105.59 (Ph), 108.62 (Ph), 111.44 (C-3), 112.10 (Ph), 130.02 (Ph), 139.77 (Ph q carbon), 145.01 (C-2), 156.32 (Urea-CO), 160.20 (Ph q carbon), 161.58 (<u>CO</u>OCH₃), 169.83, 170.15, 170.60, 172.18 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₃N₃O₁₂] (*m*/*z*): (+ve ion mode) 602.4 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+1]⁺ calcd for C₂₆H₃₄N₃O₁₂ [M+1]⁺ 580.21370; found, 580.21378.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(3-(4-methoxyphenyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (8e).³

¹H NMR (300 MHz, CDCl₃): δ 1.61 (s, 3H, NAc), 2.00 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.08 (s, 3H, OAc), 3.73 (s, 3H, OCH₃), 3.81 (s, 3H, COOCH₃), 4.03 (q, *J* = 10.0 Hz, 1H, H-5), 4.16 (dd, *J* = 12.4, 7.2 Hz, 1H, H-9), 4.42 (dd, *J* = 10.2, 2.1 Hz, 1H, H-6), 4.68 (dd, *J* = 12.4, 2.7 Hz, 1H, H-9'), 4.90 (t, *J* = 9.9 Hz, 1H, H-4), 5.35 (ddd, *J* = 7.4, 5.0, 2.6 Hz, 1H, H-8), 5.57 (dd, *J* = 5.1, 2.1 Hz, 1H, H-7), 5.81 (d, *J* = 10.1 Hz, 1H, Urea-N1-NH), 5.94 (d, *J* = 2.3 Hz, 1H, H-3), 6.79 (d, *J* = 8.8 Hz, 2H, Ph-H-3', Ph-H-5'), 7.06 (d, *J* = 8.9 Hz, 2H, Ph-H-2', Ph-H-6'), 7.69 (d, *J* = 9.9 Hz, 1H, NHAc), 8.03 (s, 1H, Urea-N2-NH); ¹³C NMR (75 MHz, CDCl₃): δ 20.73, 20.79, 20.86 (3 OCO<u>CH₃</u>), 22.89 (NHCO<u>CH₃</u>), 47.97 (C-5), 49.12 (C-4), 52.49 (COO<u>CH₃</u>), 55.43 (Ph-O<u>CH₃</u>), 62.20 (C-9), 68.07 (C-7), 71.17 (C-8), 77.50 (C-6), 111.67 (C-3), 114.49 (Ph), 122.64 (Ph), 131.12 (Ph q carbon), 144.76 (C-2), 156.25 (Ph), 156.90 (Urea-CO), 161.72 (<u>COOCH₃</u>), 169.84, 170.19, 170.64, 171.99 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₃N₃O₁₂] (*m/z*): (+ve ion mode) 601.7 [M+Na]⁺; HRMS (API) (*m/z*): [M+1]⁺ calcd for C₂₆H₃₄N₃O₁₂ [M+1]⁺ 580.2137; found, 580.214037.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(3-(2-(trifluoromethoxy)phenyl)ureido)-D*glycero*-D-*galacto*-non-2-enonate (8f).

¹H NMR (300 MHz, CDCl₃): δ 1.72 (s, 3H, NAc), 2.01 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.13 (s, 3H, OAc), 3.83 (s, 3H, COOCH₃), 4.02–4.23 (m, 2H, H-5, H-9), 4.40 (dd, *J* = 9.1, 3.2 Hz, 1H, H-6), 4.63 (dd, *J* = 12.4, 2.8 Hz, 1H, H-9'), 4.86 (ddd, *J* = 9.2, 2.7, 1.1 Hz, 1H, H-4), 5.29 (ddd, *J* = 7.5, 4.9, 2.8 Hz, 1H, H-8), 5.56 (dd, *J* = 5.1, 3.2 Hz, 1H, H-7), 6.01 (d, *J* = 2.6 Hz, 1H, H-3), 6.48 (d, *J* = 9.5 Hz, 1H, Urea-N1-NH), 6.91–7.06 (m, 2H, NHAc, Ph-H-4'), 7.15

(d, J = 8.7, 1.3 Hz, 1H, Ph-H-3'), 7.31 (ddd, J = 8.5, 8.0, 1.5 Hz, 1H, Ph-H-5'), 8.00 (dd, J = 8.3, 1.6 Hz, 1H, Ph-H-6'), 8.08 (s, 1H, Urea-N2-NH); ¹³C NMR (75 MHz, CDCl₃): δ 20.71, 20.80 (3 OCO<u>CH₃</u>), 22.43 (NHCO<u>CH₃</u>), 48.22 (C-5), 48.52 (C-4), 52.62 (COO<u>CH₃</u>), 61.91 (C-9), 67.72 (C-7), 71.03 (C-8), 77.65 (C-6), 111.22 (C-3), 118.70 (OCF₃), 121.23 (Ph), 122.27 (Ph), 123.16 (Ph), 127.73 (Ph), 131.80 (Ph q carbon), 138.55 (Ph q carbon), 144.88 (C-2), 155.68 (Urea-CO), 161.68 (<u>CO</u>OCH₃), 169.94, 170.36, 170.63, 172.27 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₀F₃N₃O₁₂] (*m/z*): (+ve ion mode) 656.2 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-4-(3-(benzo[d][1,3]dioxol-5-yl)ureido)-3,4,5-trideoxy-D*glycero*-D-*galacto*-non-2-enonate (8g).

¹H NMR (300 MHz, CDCl₃): δ 1.68 (s, 3H, NAc), 2.02 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.06 (s, 3H, OAc), 3.80 (s, 3H, COOCH₃), 4.00 (m, 1H, H-5), 4.17 (dd, *J* = 12.4, 7.3 Hz, 1H, H-9), 4.39 (dd, *J* = 10.0, 2.1 Hz, 1H, H-6), 4.64 (dd, *J* = 12.4, 2.7 Hz, 1H, H-9'), 4.87 (td, *J* = 9.9, 2.4 Hz, 1H, H-4), 5.34 (m, 1H, H-8), 5.52 (dd, *J* = 5.3, 2.1 Hz, 1H, H-7), 5.75–5.99 (m, 4H, CH₂, Urea-N1-NH, H-3), 6.57 (dd, *J* = 8.4, 2.0 Hz, 1H, Ph-H-5'), 6.62–6.74 (m, 2H, Ph-H-2', Ph-H-6'), 7.67 (d, *J* = 10.0 Hz, 1H, NHAc), 8.13 (s, 1H, Urea-N2-NH); ¹³C NMR (75 MHz, CDCl₃): δ 20.71, 20.79, 20.93 (3 OCO<u>CH₃</u>), 23.11 (NHCO<u>CH₃</u>), 48.04 (C-5), 49.00 (C-4), 52.51 (COO<u>CH₃</u>), 62.15 (C-9), 67.92 (C-7), 71.33 (C-8), 77.47 (C-6), 101.26 (CH₂), 103.59 (Ph), 108.32 (Ph), 111.37, 114.17 (Ph), 132.21 (Ph q carbon), 144.22 (Ph q carbon), 144.73 (C-2), 148.00 (Ph q carbon), 156.53 (Urea-CO), 161.67 (<u>CO</u>OCH₃), 169.90, 170.40, 170.62, 171.88 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₁N₃O₁₃] (*m*/*z*): (+ve ion mode) 615.7 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+1]⁺ calcd for C₂₆H₃₂N₃O₁₃ [M+1]⁺ 594.192964; found, 594.190122.

General Procedure for the synthesis of compounds 9a-g

To a suspension of compound **8a-g** (0.10 mmol) in a (1:1) mixture of MeOH and water (2 mL) at 0 °C was added NaOH solution (1.0 M) dropwise until the pH reaches 13-14. The temperature was raised gradually to rt and the mixture was stirred at rt overnight. The compound was then purified by passing through C18-GracePureTM cartridge, using 2% acetonitrile/water, to yield the pure deprotected urea derivative **9a-g** as fluffy white powder after freeze drying.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(3-(4-methoxybenzyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (9a).

¹H NMR (300 MHz, D₂O): δ 1.92 (s, 3H, NAc), 3.59–3.71 (m, 2H, H-7, H-9), 3.85 (s, 3H, OCH₃), 3.87–4.00 (m, 2H, H-8, H-9'), 4.08 (dd, *J* = 10.7, 9.7 Hz, 1H, H-5), 4.16–4.35 (m, 3H, H-6, CH₂), 4.60 (dd, *J* = 9.7, 2.3 Hz, 1H, H-4), 5.59 (d, *J* = 2.3 Hz, 1H, H-3), 7.01 (d, *J* = 8.8 Hz, 2H, Ph-H-3', Ph-H-5'), 7.27 (d, *J* = 8.8 Hz, 2H, Ph-H-2', Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 24.52 (NHCO<u>CH₃</u>), 45.26 (CH₂), 50.92 (C-5), 51.36(C-4), 57.92 (Ph-O<u>CH₃</u>), 65.66 (C-9), 70.79 (C-7), 72.34 (C-8), 78.17 (C-6), 109.57 (C-3), 116.65 (Ph), 130.67 (Ph), 134.79 (Ph q carbon), 150.72 (C-2), 160.34 (Ph q carbon), 162.44 (Urea-CO), 172.18 (COONa), 176.76 (NH<u>CO</u>CH₃); LRMS [C₂₀H₂₆N₃NaO₉] (*m/z*): (+ve ion mode) 498.2 [M+Na]⁺; HRMS (API) (*m/z*): [M+Na]⁺ calcd for C₂₀H₂₆N₃Na₂O₉ [M+Na]⁺ 498.1459; found, 498.1455. Purity by analytical HPLC (197 nm) = 100%, *t*_R = 2.95 min.

Sodium 5-acetamido-2,6-anhydro-4-(3-(2-chlorophenyl)ureido)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2enonate (9b).

¹H NMR (300 MHz, D₂O): δ 2.06 (s, 3H, NAc), 3.63–3.74 (m, 2H, H-7, H-9), 3.89–4.03 (m, 2H, H-8, H-9'), 4.17 (dd, J = 10.7, 9.7 Hz, 1H, H-5), 4.37 (dd, J = 10.7, 1.2 Hz, 1H, H-6), 4.71 (dd, J = 9.7, 2.3 Hz, 1H, H-4), 5.68 (d, J = 2.3 Hz, 1H, H-3), 7.27 (ddd, J = 8.0, 7.5, 1.7 Hz, 1H, Ph-H-4'), 7.27 (ddd, J = 7.9, 7.6, 1.6 Hz, 1H, Ph-H-5'), 7.50-7.56 (m, 2H, Ph-H-3', Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 22.15 (NHCO<u>CH₃</u>), 48.25 (C-5), 48.97 (C-4), 63.15 (C-9), 68.24 (C-7), 69.87 (C-8), 75.66 (C-6), 106.68 (C-3), 126.80 (Ph), 126.98 (Ph), 127.70 (Ph), 128.69 (Ph q carbon), 129.71 (Ph), 134.13 (Ph q carbon), 148.40 (C-2), 158.08 (Urea-CO), 169.54 (COONa), 174.36 (NH<u>CO</u>CH₃); LRMS [C₁₈H₂₁ClN₃NaO₈] (*m/z*): (+ve ion mode) 488.1 [M+Na]⁺; HRMS (API) (*m/z*): [M+Na]⁺ calcd for C₁₈H₂₁ClN₃Na₂O₈ [M+Na]⁺ 488.0807; found, 488.0812. Purity by analytical HPLC (244 nm) = 100%, *t*_R= 4.54 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(3-(2-methoxybenzyl)ureido)-D-*glycero*-D-*galacto*-non-2enonate (9c).³

¹H NMR (300 MHz, D₂O): δ 2.05 (s, 3H, NAc), 3.62–3.74 (m, 2H, H-7, H-9), 3.90 (s, 3H, OCH₃), 3.91–4.02 (m, 2H, H-8, H-9'), 4.16 (m, 1H, H-5), 4.37 (dd, *J* = 10.7, 1.2 Hz, 1H, H-6), 4.70 (dd, *J* = 9.8, 2.3 Hz, 1H, H-4), 5.67 (d, *J* = 2.3 Hz, 1H, H-3), 7.05 (ddd, *J* = 8.2, 7.6, 1.4 Hz, 1H, Ph-H-5'), 7.13 (dd, *J* = 8.3, 1.4 Hz, 1H, Ph-H-3'), 7.25 (ddd, *J* = 8.2, 7.4, 1.7 Hz, 1H, Ph-H-4'), 7.52 (dd, *J* = 7.8, 1.6 Hz, 1H, Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 22.08 (NHCO<u>CH₃</u>), 48.18 (C-5), 48.91 (C-4), 55.96 (Ph-O<u>CH₃</u>), 63.15 (C-9), 68.25 (C-7), 69.86 (C-8), 75.68 (C-6), 106.85 (C-3), 112.10 (Ph), 121.10 (Ph), 123.96 (Ph), 125.87 (Ph), 126.40 (Ph q carbon), 148.33 (C-2), 151.48 (Ph q carbon), 158.22 (Urea-CO), 169.59 (COONa), 174.42 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₄N₃NaO₉] (*m*/*z*): (+ve ion mode) 484.2 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₂₄N₃Na₂O₉ [M+Na]⁺ 484.1302; found, 484.1311. Purity by analytical HPLC (244 nm) = 100%, *t*_R = 3.82 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(3-(3-methoxyphenyl)ureido)-D-*glycero*-D-*galacto*-non-2enonate (9d).³

¹H NMR (300 MHz, D₂O): δ 2.05 (s, 3H, NAc), 3.67-3.73 (m, 2H, H-7, H-9), 3.87 (s, 3H, Ph-OCH₃), 3.91–4.06 (m, 2H, H-9', H-8), 4.20 (m, 1H, H-5), 4.39 (d, *J* = 10.7 Hz, 1H, H-6), 4.68–4.76 (m, 1H, H-4), 5.67 (d, *J* = 2.8 Hz, 1H, H-3), 6.81 (dd, *J* = 8.4, 2.4 Hz, 1H, Ph-H-4'), 6.93 (dd, *J* = 8.1, 1.4 Hz, 1H, Ph-H-6'), 7.02 (d, t, *J* = 2.4 Hz, 1H, Ph-H-2'), 7.35 (t, *J* = 8.2 Hz, 1H, Ph-H-5'); ¹³C NMR (75 MHz, D₂O): δ 22.02 (NHCO<u>CH₃</u>), 48.16 (C-5), 48.90 (C-4), 55.32 (OCH₃), 63.13 (C-9), 68.25 (C-7), 69.79 (C-8), 75.59 (C-6), 106.72 (Ph), 106.89 (C-3), 109.56 (Ph), 113.91 (Ph), 130.09 (Ph), 139.36 (Ph q carbon), 148.32 (C-2), 157.71 (Ph q carbon), 159.36 (Urea-CO), 169.61 (COONa), 174.37 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₄N₃NaO₉] (*m*/*z*): (+ve ion mode) 484.1 [M+Na]⁺. Purity by analytical HPLC (209 nm) = 100%, *t*_R = 6.01 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(3-(4-methoxyphenyl)ureido)-D-*glycero*-D-*galacto*-non-2enonate (9e).³

¹H NMR (300 MHz, D₂O): δ 2.06 (s, 3H, NAc), 3.64–3.74 (m, 2H, H-7, H-9), 3.86 (s, 3H, OCH₃), 3.90–4.04 (m, 2H, H-8, H-9'), 4.17 (dd, *J* = 10.7, 9.8 Hz, 1H, H-5), 4.37 (dd, *J* = 10.7, 1.2 Hz, 1H, H-6), 4.69 (dd, *J* = 9.7, 2.3 Hz, 1H, H-4), 5.67 (d, *J* = 2.3 Hz, 1H, H-3), 7.02 (d, *J* = 9.0 Hz, 2H, Ph-H-3', Ph-H-5'), 7.24 (d, *J* = 9.1 Hz, 2H, Ph-H-2', Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 22.06 (NHCO<u>CH₃</u>), 48.15 (C-5), 48.95 (C-4), 55.57 (OCH₃), 63.11 (C-9), 68.21 (C-7), 69.84 (C-8), 75.61 (C-6), 106.93 (C-3), 114.50 (Ph), 124.84 (Ph), 130.63 (Ph q carbon), 148.52 (C-2), 156.04 (Ph q carbon), 158.52 (Urea-CO), 169.57 (COONa), 174.35 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₄N₃NaO₉] (*m*/*z*): (+ve ion mode) 484.1 [M+Na]⁺. Purity by analytical HPLC (198 nm) = 97.7%, *t*_R = 4.21 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(3-(2-(trifluoromethoxy)phenyl)ureido)-D-*glycero*-D-*galacto*-non-2-enonate (9f).

¹H NMR (300 MHz, D₂O): δ 2.04 (s, 3H, NAc), 3.66-3.72 (m, 2H, H-7, H-9), 3.89–4.04 (m, 2H, H-8, H-9'), 4.17 (t, *J* = 10.2 Hz, 1H, H-5), 4.37 (d, *J* = 10.7 Hz, 1H, H-6), 4.71 (d, *J* = 2.4 Hz, 1H, H-4), 5.70 (d, *J* = 2.3 Hz, 1H, H-3), 7.31 (m, 1H, Ph-H-4'), 7.38–7.50 (m, 2H, Ph-H-3', Ph-H-5'), 7.59 (dd, *J* = 7.9, 1.7 Hz, 1H, Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 21.97 (NHCO<u>CH₃</u>), 48.09 (C-5), 48.83 (C-4), 63.14 (C-9), 68.22 (C-7), 69.86 (C-8), 75.75 (C-6), 107.06 (C-3), 122.13 (Ph), 126.23 (Ph), 127.86 (Ph), 130.37 (Ph q carbon), 141.74 (Ph q carbon), 147.96 (C-2), 157.88 (Urea-CO), 169.23 (COONa), 174.34 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₁F₃N₃NaO₉] (*m*/*z*): (+ve ion mode) 538.1 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₂₁F₃N₃Na₂O₉ [M+Na]⁺ 538.1020; found, 538.1008. Purity by analytical HPLC (202 nm) = 96.1%, *t*_R = 4.86 min.

Sodium 5-acetamido-2,6-anhydro-4-(3-(benzo[d][1,3]dioxol-5-yl)ureido)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (9g).

¹H NMR (300 MHz, D₂O): δ 2.03 (s, 3H, NAc), 3.60–3.72 (m, 2H, H-7, H-9), 3.87–4.01 (m, 2H, H-8, H-9'), 4.14 (dd, J = 10.7, 9.7 Hz, 1H, H-5), 4.34 (dd, J = 10.7, 1.2 Hz, 1H, H-6), 4.66 (dd, J = 9.7, 2.4 Hz, 1H, H-4), 5.63 (d, J = 2.3 Hz, 1H, H-3), 5.98 (m, 2H, CH₂), 6.71 (dd, J = 8.4, 2.1 Hz, 1H, Ph-H-5'), 6.82–6.92 (m, 2H, Ph-H-2', Ph-H-6'); ¹³C NMR (75 MHz, D₂O): δ 22.04 (NHCO<u>CH₃</u>), 48.18 (C-5), 48.98 (C-4), 63.13 (C-9), 68.25 (C-7), 69.79 (C-8), 75.58 (C-6), 101.33 (CH₂), 105.26 (Ph), 106.77 (C-3), 108.33 (Ph), 116.53 (Ph), 131.50 (Ph q carbon), 144.27 (Ph q carbon), 147.33 (Ph q carbon), 148.27 (C-2), 158.45 (Urea-CO), 169.60 (COONa), 174.32 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₂N₃NaO₁₀] (*m/z*): (+ve ion mode) 498.0 [M+Na]⁺. Purity by analytical HPLC (249 nm) = 100%, *t*_R = 2.82 min.

Synthesis of Compounds 11a-c

^aReagents and conditions: (a) R-COCl, Et₃N, DCM, argon, rt, o/n, (**10a**, 80%; **10b**, 77%, **10c**, 89%) (b) NaOH, MeOH/H₂O (1:1), rt, o/n, (**11a**, 89%; **11b**, 85%, **11c**, 91%).

General Procedure for the synthesis of compounds 10a-c

To a solution of the amine 7 (60 mg, 0.14 mmol) and triethylamine (60 μ L, 0.42 mmol) in DCM (3 mL) was added the corresponding acid chloride (0.28 mmol) while stirring. The reaction mixture was stirred at rt o/n, then the solvent was removed under vacuum and the reside was purified by silica gel chromatography using the proper solvent system to yield the pure urea derivative **10a-c**.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-4-benzamido-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (10a).

¹H NMR (400 MHz, CDCl₃): δ 1.72 (s, 3H, NAc), 2.06 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.09 (s, 3H, OAc), 3.78 (s, 3H, COOCH₃), 4.20 (dd, *J* = 12.4, 7.4 Hz, 1H, H-9), 4.30–4.49 (m, 2H, H-5, H-6), 4.74 (dd, *J* = 12.5, 2.5 Hz, 1H, H-

9'), 5.05 (t, *J* = 8.4 Hz, 1H, H-4), 5.35 (ddd, *J* = 7.2, 4.5, 2.5 Hz, 1H, H-8), 5.59 (d, *J* = 4.1 Hz, 1H, H-7), 6.02 (d, *J* = 1.9 Hz, 1H, H-3), 6.90 (d, *J* = 7.9 Hz, 1H, C4-NH), 7.02 (d, *J* = 9.1 Hz, 1H, NHAc), 7.40 (t, *J* = 7.4 Hz, 2H, Ph-2H), 7.47 (t, *J* = 7.3 Hz, 1H, Ph-H), 7.73 (d, *J* = 7.3 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.62, 20.82, 20.94 (3 OCO<u>CH₃</u>), 22.86 (NHCO<u>CH₃</u>), 46.58 (C-5), 49.86 (C-4), 52.47 (COO<u>CH₃</u>), 62.26 (C-9), 68.07 (C-7), 71.59 (C-8), 77.15 (C-6), 110.70 (C-3), 127.06 (Ph), 128.82 (Ph), 132.10 (Ph), 133.39 (Ph q carbon), 144.46 (C-2), 161.82 (<u>CO</u>OCH₃), 168.60 (Ph-<u>CO</u>), 169.96, 170.48, 170.69, 171.83; (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₅H₃₀N₂O₁₁] (*m*/*z*): (+ve ion mode) 557.1 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-4-(4-chlorobenzoyl)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (10b).

¹H NMR (400 MHz, CDCl₃): δ 1.72 (s, 3H, NAc), 2.05 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.08 (s, 3H, OAc), 3.76 (s, 3H, COOCH₃), 4.19 (dd, *J* = 12.4, 7.7 Hz, 1H, H-9), 4.35 (q, *J* = 9.9 Hz, 1H, H-5), 4.43 (dd, *J* = 10.4, 2.0 Hz, 1H, H-6), 4.76 (dd, *J* = 12.4, 2.5 Hz, 1H, H-9[']), 5.00 (ddd, *J* = 10.4, 8.3, 2.4 Hz, 1H, H-4), 5.33 (ddd, *J* = 7.2, 4.3, 2.5 Hz, 1H, H-8), 5.59 (dd, *J* = 4.2, 1.9 Hz, 1H, H-7), 6.00 (d, *J* = 2.2 Hz, 1H, H-3), 7.13 (d, *J* = 8.3 Hz, 1H, C4-NH), 7.20 (d, *J* = 9.6 Hz, 1H, NHAc), 7.35 (d, *J* = 8.5 Hz, 2H, Ph-2H), 7.68 (d, *J* = 8.5 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.56, 20.81, 20.92 (3 OCO<u>CH₃</u>), 22.88 (NHCO<u>CH₃</u>), 46.49 (C-5), 50.00 (C-4), 52.49 (COO<u>CH₃</u>), 62.30 (C-9), 68.12 (C-7), 71.79 (C-8), 77.08 (C-6), 110.57 (C-3), 128.58 (Ph), 129.03 (Ph), 131.73 (Ph q carbon), 138.39 (Ph q carbon), 144.40 (C-2), 161.77 (<u>CO</u>OCH₃), 167.53 (Ph-<u>CO</u>), 169.92, 170.59, 170.72, 171.90 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₅H₂₉ClN₂O₁₁] (*m*/z): (+ve ion mode) 591.3 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(4-methoxybenzoyl)-D-*glycero*-D-*galacto*-non-2-enonate (10c).

¹H NMR (400 MHz, CDCl₃): δ 1.66 (s, 3H, NAc), 2.05 (s, 6H, 2OAc), 2.08 (s, 3H, OAc), 3.76 (s, 3H, COOCH₃), 3.79 (s, 3H, Ph-O<u>CH₃</u>), 4.20 (dd, *J* = 12.4, 7.5 Hz, 1H, H-9), 4.28–4.45 (m, 2H, H-5, H-6), 4.74 (dd, *J* = 12.5, 2.6 Hz, 1H, H-9'), 5.02 (ddd, *J* = 10.8, 8.4, 2.4 Hz, 1H, H-4), 5.35 (ddd, *J* = 7.3, 4.5, 2.5 Hz, 1H, H-8), 5.59 (dd, *J* = 4.5, 1.9 Hz, 1H, H-7), 6.00 (d, *J* = 2.3 Hz, 1H, H-3), 6.85–6.89 (m, 3H, C4-NH, Ph-2H), 7.29 (d, *J* = 9.5 Hz, 1H, N<u>H</u>Ac), 7.69 (d, *J* = 8.8 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.61, 20.81, 20.90 (3 OCO<u>CH₃</u>), 22.80 (NHCO<u>CH₃</u>), 46.53 (C-5), 49.75 (C-4), 52.40 (COO<u>CH₃</u>), 55.38 (Ph-<u>OCH₃</u>), 62.33 (C-9), 68.18 (C-7), 71.59 (C-8), 77.11 (C-6), 111.04 (C-3), 113.97 (Ph), 125.59 (Ph q carbon), 128.98 (Ph), 144.27 (C-2), 161.87 (<u>CO</u>OCH₃), 162.61 (Ph q carbon), 168.05 (Ph-<u>CO</u>), 169.91, 170.41, 170.67, 171.78 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₆H₃₂N₂O₁₂] (*m/z*): (+ve ion mode) 587.3 [M+Na]⁺.

General Procedure for the synthesis of compounds 11a-c

To a suspension of compound **10a-c** (0.10 mmol) in a (1:1) mixture of MeOH and water (2 mL) at 0 °C was added NaOH solution (1.0 M) dropwise until the pH reaches 13-14. The temperature was raised gradually to rt and the mixture was stirred at rt overnight. The compound was then purified by passing through C18-GracePureTM cartridge, using 2% acetonitrile/water, to yield the pure deprotected amide derivative **11a-c** as fluffy white powder after freeze drying.

Sodium 5-acetamido-2,6-anhydro-4-benzamido-3,4,5-trideoxy-D-glycero-D-galacto-non-2-enonate (11a).

¹H NMR (300 MHz, D₂O): δ 1.96 (s, 3H, NAc), 3.65–3.72 (m, 2H, H-7, H-9), 3.86–4.07 (m, 2H, H-8, H-9'), 4.32 (t, *J* = 10.2 Hz, 1H, H-5), 4.44 (d, *J* = 10.7 Hz, 1H, H-6), 5.05 (dd, *J* = 9.6, 2.6 Hz, 1H, H-4), 5.67 (d, *J* = 2.3 Hz, 1H, H-3), 7.52–7.74 (m, 5H, Ph-H); ¹³C NMR (75 MHz, D₂O): δ 21.91 (NHCO<u>CH₃</u>), 47.93 (C-5), 48.93 (C-4), 63.13 (C-9), 68.20 (C-7), 69.82 (C-8), 75.46 (C-6), 105.50 (C-3), 127.08 (Ph), 128.76 (Ph), 132.18 (Ph), 133.57 (Ph q carbon), 148.82 (C-2), 169.49 (COONa), 171.38 (Ph-<u>CO</u>), 174.20 (NH<u>CO</u>CH₃); LRMS [C₁₈H₂₁N₂NaO₈] (*m/z*): (+ve ion mode)

439.1 [M+Na]⁺; HRMS (API) (m/z): [M+1]⁺ calcd for C₁₈H₂₃N₂O₈ [M+1]⁺ 395.1449; found, 395.1461. Purity by analytical HPLC (237 nm) = 100%, $t_{\rm R}$ = 6.49 min.

Sodium 5-acetamido-2,6-anhydro-4-(4-chlorobenzoyl)-3,4,5-trideoxy-D-glycero-D-galacto-non-2-enonate (11b).

¹H NMR (400 MHz, D₂O): δ 1.95 (s, 3H, NAc), 3.62–3.73 (m, 2H, H-7, H-9), 3.92 (dd, *J* = 11.9, 2.7 Hz, 1H, H-9'), 3.99 (ddd, *J* = 9.3, 6.4, 2.7 Hz, 1H, H-8), 4.30 (t, *J* = 10.2 Hz, 1H, H-5), 4.43 (dd, *J* = 10.9, 1.3 Hz, 1H, H-6), 5.03 (dd, *J* = 9.7, 2.3 Hz, 1H. H-4), 5.65 (d, *J* = 2.3 Hz, 1H, H-3), 7.53 (d, *J* = 8.6 Hz, 2H, Ph-2H), 7.68 (d, *J* = 8.6 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ 21.92 (NHCO<u>CH₃</u>), 47.91 (C-5), 49.01 (C-4), 63.14 (C-9), 68.19 (C-7), 69.80 (C-8), 75.44 (C-6), 105.38 (C-3), 128.68 (Ph), 128.83 (Ph), 132.10 (Ph q carbon), 137.64 (Ph q carbon), 148.86 (C-2), 169.47 (COONa), 170.29 (Ph-<u>CO</u>), 174.20 (NH<u>CO</u>CH₃); LRMS [C₁₈H₂₀ClN₂NaO₈] (*m*/*z*): (+ve ion mode) 473.0 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+1]⁺ calcd for C₁₈H₂₂ClN₂O₈ [M+1]⁺ 429.1059; found, 429.1074. Purity by analytical HPLC (243 nm) = 98.6%, *t*_R = 6.57 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(4-methoxybenzoyl)-D-*glycero*-D-*galacto*-non-2-enonate (11c).

¹H NMR (400 MHz, D₂O): δ 1.94 (s, 3H, NAc), 3.62–3.72 (m, 2H, H-7, H-9), 3.89 (s, 3H, OCH₃), 3.92 (dd, *J* = 12.0, 2.7 Hz, 1H, H-9'), 3.99 (ddd, *J* = 9.3, 6.3, 2.6 Hz, 1H, H-8), 4.30 (t, *J* = 10.2 Hz, 1H, H-5), 4.42 (d, *J* = 10.7 Hz, 1H, H-6), 5.02 (dd, *J* = 9.7, 2.3 Hz, 1H, H-4), 5.65 (d, *J* = 2.2 Hz, 1H, H-3), 7.07 (d, *J* = 8.8 Hz, 2H, Ph-2H), 7.71 (d, *J* = 8.8 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ 21.91 (NHCO<u>CH₃</u>), 47.92 (C-5), 48.88 (C-4), 55.47 (OCH₃), 63.14 (C-9), 68.22 (C-7), 69.81 (C-8), 75.48 (C-6), 105.68 (C-3), 114.02 (Ph), 125.94 (Ph q carbon), 129.18 (Ph), 148.75 (C-2), 162.03 (Ph q carbon), 169.51 (COONa), 170.60 (Ph-<u>CO</u>), 174.19 (NH<u>CO</u>CH₃); LRMS [C₁₉H₂₃N₂NaO₉] (*m/z*): (+ve ion mode) 469.1 [M+Na]⁺; HRMS (API) (*m/z*): [M+1]⁺ calcd for C₁₉H₂₅N₂O₉ [M+1]⁺ 425.1555; found, 425.1570. Purity by analytical HPLC (240 nm) = 100%, *t*_R= 2.23 min.

Synthesis of Compounds 13a-d

^aReagents and conditions: (a) R-SO₂Cl, Et₃N, DCM, argon, rt, o/n, (**12a**, 83%; **12b**, 89%, **12c**, 82%; **12d**, 74%) (b) NaOH, MeOH/H₂O (1:1), rt, o/n, (**13a**, 85%; **13b**, 92%, **13c**, 89%; **13d**, 88%).

General Procedure for the synthesis of compounds 12a-d

To a solution of the amine 7 (60 mg, 0.14 mmol) and triethylamine (60 μ L, 0.42 mmol) in DCM (3 mL) was added the corresponding arylsulfonyl chloride (0.28 mmol) while stirring. The reaction mixture was stirred at rt o/n, then the solvent was removed under vacuum and the reside was purified by silica gel chromatography using the proper solvent system to yield the pure urea derivative **12a-d**.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-phenylsulfonamido-D-*glycero*-D-*galacto*-non-2-enonate (12a).

¹H NMR (400 MHz, CDCl₃): δ 1.75 (s, 3H, NAc), 2.01 (s, 9H, 3OAc), 3.71 (s, 3H, COOCH₃), 4.03–4.19 (m, 3H, H-4, H-5, H-9), 4.34 (dd, *J* = 10.3, 2.2 Hz, 1H, H-6), 4.66 (dd, *J* = 12.3, 2.7 Hz, 1H, H-9[°]), 5.23 (m, 1H, H-8), 5.42 (dd, *J* = 4.4, 2.1 Hz, 1H, H-7), 5.71 (d, *J* = 2.3 Hz, 1H, H-3), 6.30–6.36 (m, 2H, N<u>H</u>Ac, C4-NH), 7.42–7.61 (m, 3H, Ph-3H), 7.82 (d, *J* = 7.3 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.60, 20.78, 20.88 (3 OCO<u>CH₃</u>), 23.02 (NHCO<u>CH₃</u>), 47.01 (C-5), 52.43 (COO<u>CH₃</u>), 52.73 (C-4), 62.14 (C-9), 68.04 (C-7), 71.49 (C-8), 77.00 (C-6), 110.97 (C-3), 126.79 (Ph), 129.30 (Ph), 132.75 (Ph), 140.97 (Ph q carbon), 144.20 (C-2), 161.61 (<u>CO</u>OCH₃), 169.99, 170.58, 170.68, 172.06 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₄H₃₀N₂O₁₂S] (*m/z*): (+ve ion mode) 593.2 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-4-(4-chlorophenylsulfonamido)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (12b).

¹H NMR (400 MHz, CDCl₃): δ 1.79 (s, 3H, NAc), 2.02 (s, 9H, 3OAc), 3.74 (s, 3H, COOCH₃), 4.02–4.20 (m, 3H, H-4, H-5, H-9), 4.33 (d, *J* = 8.6 Hz, 1H, H-6), 4.68 (dd, *J* = 12.5, 2.7 Hz, 1H, H-9'), 5.24 (m, 1H, H-8), 5.43 (dd, *J* = 4.3, 2.1 Hz, 1H, H-7), 5.71 (d, *J* = 1.9 Hz, 1H, H-3), 6.34 (d, *J* = 8.2 Hz, 1H, C4-NH), 6.45 (d, *J* = 5.9 Hz, 1H, N<u>H</u>Ac), 7.46 (d, *J* = 8.3 Hz, 2H, Ph-2H), 7.77 (d, *J* = 8.3 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.58, 20.79, 20.88 (3 OCO<u>CH₃</u>), 23.02 (NHCO<u>CH₃</u>), 47.01 (C-5), 52.52 (COO<u>CH₃</u>), 52.78 (C-4), 62.11 (C-9), 68.06 (C-7), 71.52 (C-8), 77.01 (C-6), 110.71 (C-3), 128.35 (Ph), 129.53 (Ph), 139.21 (Ph q carbon), 139.51 (Ph q carbon), 144.30 (C-2), 161.54 (<u>CO</u>OCH₃), 169.94, 170.60, 170.72, 172.08 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₄H₂₉ClN₂O₁₂S] (*m*/*z*): (+ve ion mode) 627.2 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(4-methoxyphenylsulfonamido)-D-*glycero*-D-*galacto*-non-2-enonate (12c).

¹H NMR (400 MHz, CDCl₃): δ 1.79 (s, 3H, NAc), 2.02 (s, 9H, 3OAc), 3.72 (s, 3H, COOCH₃), 3.84 (s, 3H, Ph-O<u>CH₃</u>), 4.04 (q, *J* = 9.8 Hz, 1H, H-5), 4.13 (m, 2H, H-4, H-9), 4.35 (dd, *J* = 10.3, 2.1 Hz, 1H, H-6), 4.65 (dd, *J* = 12.5, 2.6 Hz, 1H, H-9[°]), 5.24 (ddd, *J* = 7.4, 4.7, 2.6 Hz, 1H, H-8), 5.43 (dd, *J* = 4.7, 2.1 Hz, 1H, H-7), 5.72 (d, *J* = 2.3 Hz, 1H, H-3), 6.01 (d, *J* = 8.3 Hz, 1H, C4-NH), 6.24 (d, *J* = 9.3 Hz, 1H, N<u>H</u>Ac), 6.95 (d, *J* = 8.9 Hz, 2H, Ph-2H), 7.75 (d, *J* = 8.8 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.64, 20.80, 20.90 (3 OCO<u>CH₃</u>), 23.10 (NHCO<u>CH₃</u>), 47.19 (C-5), 52.46 (C-4, COO<u>CH₃</u>), 55.68 (Ph-O<u>CH₃</u>), 62.12 (C-9), 68.00 (C-7), 71.38 (C-8), 76.93 (C-6), 111.02 (C-3), 114.43 (Ph), 129.05 (Ph), 132.28 (Ph q carbon), 144.19 (C-2), 161.65 (<u>CO</u>OCH₃), 162.98 (Ph q carbon), 170.01, 170.53, 170.69, 171.98 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₅H₃₂N₂O₁₃S] (*m*/*z*): (+ve ion mode) 623.3 [M+Na]⁺.

Methyl 5-acetamido-7,8,9-tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-(4-methylphenylsulfonamido)-D-*glycero*-D-*galacto*-non-2-enonate (12d).

¹H NMR (300 MHz, CDCl₃): δ 1.78 (s, 3H, NAc), 2.03 (s, 9H, 3OAc), 2.40 (s, 3H, Ph-CH₃), 3.73 (s, 3H, COOCH₃), 3.95–4.21 (m, 3H, H-4, H-5, H-9), 4.35 (dd, *J* = 10.1, 2.1 Hz, 1H, H-6), 4.64 (dd, *J* = 12.5, 2.7 Hz, 1H, H-9[°]), 5.25 (td, *J* = 6.0, 4.7, 2.7 Hz, 1H, H-8), 5.43 (dd, *J* = 4.7, 2.1 Hz, 1H, H-7), 5.73 (d, *J* = 2.3 Hz, 1H, H-3), 5.88 (d, *J* = 8.2 Hz, 1H, C4-NH), 6.00 (d, *J* = 9.2 Hz, 1H, N<u>H</u>Ac), 7.29 (d, *J* = 8.1 Hz, 2H, PH-2H), 7.71 (d, *J* = 8.1 Hz, 2H, Ph-2H); ¹³C

NMR (75 MHz, CDCl₃): δ 20.61, 20.77, 20.87 (3 OCO<u>CH₃</u>), 21.51 (Ph-CH₃), 23.04 (NHCO<u>CH₃</u>), 47.33 (C-5), 52.43 (COO<u>CH₃</u>), 52.55 (C-4), 62.09 (C-9), 67.96 (C-7), 71.27 (C-8), 76.90 (C-6), 110.86 (C-3), 126.90 (Ph), 129.87 (Ph), 137.82 (Ph q carbon), 143.67 (Ph q carbon), 144.27 (C-2), 161.61 (<u>CO</u>OCH₃), 169.97, 170.42, 170.62, 171.85 (NH<u>CO</u>CH₃, 3 O<u>CO</u>CH₃); LRMS [C₂₅H₃₂N₂O₁₂S] (*m/z*): (+ve ion mode) 607.2 [M+Na]⁺.

General Procedure for the synthesis of compounds 13a-d

To a suspension of compound **12a-d** (0.10 mmol) in a (1:1) mixture of MeOH and water (2 mL) at 0 °C was added NaOH solution (1.0 M) dropwise until the pH reaches 13-14. The temperature was raised gradually to rt and the mixture was stirred at rt overnight. The compound was then purified by passing through C18-GracePureTM cartridge, using 2% acetonitrile/water, to yield the pure deprotected sulfonamide derivative **13a-d** as fluffy white powder after freeze drying.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-phenylsulfonamido-D-*glycero*-D-*galacto*-non-2-enonate (13a).

¹H NMR (400 MHz, D₂O): δ 1.76 (s, 3H, NAc), 3.54 (dd, *J* = 9.2, 1.0 Hz, 1H, H-7), 3.62 (dd, *J* = 11.8, 6.1 Hz, 1H, H-9), 3.82–3.96 (m, 2H, H-8, H-9'), 4.02 (t, *J* = 10.2 Hz, 1H, H-5), 4.14–4.29 (m, 2H, H-4, H-6), 5.37 (d, *J* = 2.2 Hz, 1H, H-3), 7.63–7.71 (m, 2H, Ph-2H), 7.75 (m, 1H, Ph-H), 7.88–7.96 (m, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ 22.03 (NHCO<u>CH₃</u>), 47.78 (C-5), 52.02 (C-4), 63.04 (C-9), 68.14 (C-7), 69.66 (C-8), 75.64 (C-6), 105.71 (C-3), 126.43 (Ph), 129.67 (Ph), 133.57 (Ph), 139.64 (Ph q carbon), 148.62 (C-2), 169.21 (COONa), 174.28 (NH<u>CO</u>CH₃); LRMS [C₁₇H₂₁N₂NaO₉S] (*m*/*z*): (+ve ion mode) 475.2 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+1]⁺ calcd for C₁₇H₂₃N₂O₉S [M+1]⁺ 431.1119; found, 431.1124. Purity by analytical HPLC (197 nm) = 98.8%, *t*_R = 5.68 min.

Sodium 5-acetamido-2,6-anhydro-4-(4-chlorophenylsulfonamido)-3,4,5-trideoxy-D-*glycero*-D-*galacto*-non-2-enonate (13b).

¹H NMR (400 MHz, D₂O): δ 1.79 (s, 3H, NAc), 3.54 (d, *J* = 9.6 Hz, 1H, H-7), 3.62 (dd, *J* = 11.8, 6.2 Hz, 1H, H-9), 3.81–3.95 (m, 2H, H-8, H-9'), 4.02 (t, *J* = 10.2 Hz, 1H, H-5), 4.22 (dd, *J* = 10.2, 7.6 Hz, 2H, H-4, H-6), 5.39 (d, *J* = 1.7 Hz, 1H, H-3), 7.67 (d, *J* = 8.2 Hz, 2H, Ph-2H), 7.87 (d, *J* = 8.5 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ

21.97 (NHCO<u>CH₃</u>), 47.83 (C-5), 52.06 (C-4), 63.03 (C-9), 68.14 (C-7), 69.66 (C-8), 75.64 (C-6), 105.67 (C-3), 128.09 (Ph), 129.78 (Ph), 138.49 (Ph q carbon), 139.22 (Ph q carbon), 148.66 (C-2), 169.20 (COONa), 174.16 (NH<u>CO</u>CH₃); LRMS [$C_{17}H_{20}CIN_2NaO_9S$] (*m/z*): (+ve ion mode) 509.0 [M+Na]⁺; HRMS (API) (*m/z*): [M+Na]⁺ calcd for $C_{17}H_{22}CIN_2O_9S$ [M+1]⁺ 465.0729; found, 465.0743. Purity by analytical HPLC (197 nm) = 98.3%, t_R = 5.58 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(4-methoxyphenylsulfonamido)-D-*glycero*-D-*galacto*-non-2-enonate (13c).

¹H NMR (400 MHz, D₂O): δ 1.80 (s, 3H, NAc), 3.55 (d, *J* = 9.4 Hz, 1H, H-7), 3.62 (dd, *J* = 11.8, 6.1 Hz, 1H, H-9), 3.83–3.96 (m, 5H, H-8, H-9', OCH₃), 4.01 (t, *J* = 10.2 Hz, 1H, H-5), 4.15 (dd, *J* = 9.6, 2.3 Hz, 1H, H-4), 4.22 (d, *J* = 10.7 Hz, 1H, H-6), 5.38 (d, *J* = 2.2 Hz, 1H, H-3), 7.17 (d, *J* = 8.8 Hz, 2H, Ph-2H), 7.84 (d, *J* = 8.9 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ 22.07 (NHCO<u>CH₃</u>), 47.80 (C-5), 51.88 (C-4), 55.75 (OCH₃), 63.04 (C-9), 68.14 (C-7), 69.70 (C-8), 75.64 (C-6), 105.81 (C-3), 114.85 (Ph), 128.87 (Ph), 131.33 (Ph q carbon), 148.60 (C-2), 162.87 (Ph q carbon), 169.17 (COONa), 174.22 (NH<u>CO</u>CH₃); LRMS [C₁₈H₂₃N₂NaO₁₀S] (*m*/*z*): (+ve ion mode) 504.2 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+1]⁺ calcd for C₁₈H₂₅N₂O₁₀S [M+1]⁺ 461.1224; found, 461.1235. Purity by analytical HPLC (197 nm) = 98%, *t*_R = 6.25 min.

Sodium 5-acetamido-2,6-anhydro-3,4,5-trideoxy-4-(4-methylphenylsulfonamido)-D-*glycero*-D-*galacto*-non-2-enonate (13d).

¹H NMR (400 MHz, D₂O): δ 1.75 (s, 3H, NAc), 2.45 (s, 3H, Ph-CH₃), 3.53 (d, *J* = 9.4 Hz, 1H, H-7), 3.62 (dd, *J* = 11.8, 6.1 Hz, 1H, H-9), 3.82–3.95 (m, 2H, H-8, H-9'), 4.01 (t, *J* = 10.2 Hz, 1H, H-5), 4.11–4.28 (m, 2H, H-4, H-6), 5.38 (d, *J* = 2.4 Hz, 1H, H-3), 7.48 (d, *J* = 8.1 Hz, 2H, Ph-2H), 7.78 (d, *J* = 8.0 Hz, 2H, Ph-2H); ¹³C NMR (100 MHz, D₂O): δ 20.61 (Ph-<u>CH₃</u>), 21.97 (NHCO<u>CH₃</u>), 47.82 (C-5), 51.95 (C-4), 63.03 (C-9), 68.14 (C-7), 69.66 (C-8), 75.63 (C-6), 105.88 (C-3), 126.49 (Ph), 130.15 (Ph), 136.62 (Ph q carbon), 144.91 (Ph q carbon), 148.55 (C-2), 169.25 (COONa), 174.23 (NH<u>CO</u>CH₃); LRMS [C₁₈H₂₃N₂NaO₉S] (*m*/*z*): (+ve ion mode) 489.0 [M+Na]⁺; HRMS (API) (*m*/*z*): [M+Na]⁺ calcd for C₁₈H₂₅N₂O₉S [M+1]⁺ 445.1275; found, 445.1285. Purity by analytical HPLC (200 nm) = 98.6%, *t*_R= 4.16 min.

Synthesis of Compound 16

^aReagents and conditions: (a) 4-Cl-Ph-COCl, Et₃N, DCM, argon, rt, o/n, 85%; (b) NaOH, MeOH/H₂O (1:1), rt, o/n, 94%.

Methyl 7,8,9-tri-*O*-acetyl-2,6-anhydro-4-(4-chlorobenzamido)-3,4,5-trideoxy-5-isobutyramido-D-*glycero*-D-*galacto*-non-2-enonate (15).

To a solution of the amine **14** (60 mg, 0.13 mmol) and triethylamine (56 µL, 0.39 mmol) in DCM (3 mL) was added 4-chlorobenzoyl chloride (33 µL, 0.26 mmol) while stirring. The reaction mixture was stirred at rt o/n, then the solvent was removed under vacuum and the reside was purified by silica gel chromatography using ethylacetate/hexane (3:2) to yield 66 mg of pure **15** (85%). ¹H NMR (400 MHz, CDCl₃): δ 0.83 (d, *J* = 6.6 Hz, 3H, isobut-CH₃), 0.96 (d, *J* = 6.5 Hz, 3H, isobut-CH₃), 2.05 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.09 (s, 3H, OAc), 2.51 (m, 1H, isobut-CH), 3.78 (s, 3H, COOCH₃), 4.20 (dd, *J* = 12.4, 7.6 Hz, 1H, H-9), 4.42 (t, *J* = 9.4 Hz, 1H, H-5), 4.50 (d, *J* = 10.5 Hz, 1H, H-6), 4.78 (dd, *J* = 12.4, 2.4 Hz, 1H, H-9)', 5.09 (t, *J* = 9.2 Hz, 1H, H-4), 5.31 (ddd, *J* = 7.6, 4.5, 2.7 Hz, 1H, H-8), 5.58 (d, *J* = 4.1 Hz, 1H, H-7), 5.99 (s, 1H, H-3), 6.75 (d, *J* = 10.0 Hz, 1H, 5-NH), 6.81 (d, *J* = 7.2 Hz, 1H, 4-NH), 7.38 (d, *J* = 8.1 Hz, 2H, Ph-2H), 7.67 (d, *J* = 8.2 Hz, 2H, Ph-2H); ¹³C NMR (101 MHz, CDCl₃): δ 18.80 (isobut-CH₃), 19.36 (isobut-CH₃), 20.57, 20.82, 20.97 (3 OCO<u>CH₃</u>), 35.55 (isobut-CH), 46.16 (C-5), 49.95 (C-4), 52.51 (COO<u>CH₃</u>), 62.27 (C-9), 67.99 (C-7), 71.92 (C-8), 77.20 (C-6), 110.43 (C-3), 128.61 (Ph), 129.03 (Ph), 131.74 (Ph q carbon), 138.38 (Ph q carbon), 144.56 (C-2), 161.79 (<u>CO</u>OCH₃), 167.47 (Ph-<u>CO</u>), 169.79, 170.64, 170.67 (3 O<u>C</u>OCH₃), 178.79 (isobut-<u>CO</u>); LRMS [C₂₇H₃₃ClN₂O₁₁] (*m*/z): (+ve ion mode) 619.3 [M+Na]⁺.

Sodium 2,6-anhydro-4-(4-chlorobenzamido)-3,4,5-trideoxy-5-isobutyramido-D-*glycero*-D-*galacto*-non-2-enonate (16).

To a suspension of compound **15** (50 mg, 0.084 mmol) in a (1:1) mixture of MeOH and water (2 mL) at 0 °C was added NaOH solution (1.0 M) dropwise until the pH reaches 13-14. The temperature was raised gradually to rt and the mixture was stirred at rt overnight. The solution was then acidified with Amberlite[®] IR-120 (H⁺) resin (to pH = 5), filtered and washed with MeOH (10 mL) and H₂O (10 mL). The compound was then purified by passing through C18-GracePureTM cartridge, using 2% acetonitrile/water, to yield the pure deprotected amide **16** as fluffy white powder after freeze drying (38 mg, 94%). ¹H NMR (400 MHz, D₂O): δ 0.92 (d, *J* = 6.9 Hz, 3H, isobut-CH₃), 1.03 (d, *J* = 6.9 Hz, 3H, isobut-CH₃), 2.46 (m, 1H, isobut-CH), 3.59–3.72 (m, 2H, H-7, H-9), 3.91 (dd, *J* = 11.9, 2.7 Hz, 1H, H-9'), 3.99 (ddd, *J* = 9.3, 6.3, 2.6 Hz, 1H, H-8), 4.33 (t, *J* = 10.3 Hz, 1H, H-5), 4.45 (d, *J* = 10.8 Hz, 1H, H-6), 5.04 (dd, *J* = 9.8, 2.3 Hz, 1H, H-4), 5.64 (d, *J* = 2.2 Hz, 1H, H-3), 7.52 (d, *J* = 8.6 Hz, 2H, Ph-2H), 7.66 (d, *J* = 8.6 Hz, 2H, Ph-2H); ¹³C NMR (101 MHz, D₂O): δ 18.35 (isobut-CH₃), 18.67 (isobut-CH₃), 35.22 (isobut-CH), 47.37 (C-5), 48.91 (C-4), 63.12 (C-9), 68.26 (C-7), 69.84 (C-8), 75.46 (C-6), 105.46 (C-3), 128.76 (Ph), 128.83 (Ph), 132.02 (Ph q carbon), 137.69 (Ph q carbon), 148.80 (C-2), 169.49 (COONa), 170.07 (Ph-<u>CO</u>), 181.23 (isobut-<u>CO</u>); LRMS [C₂₀H₂₄CIN₂NaO₈] (*m*/z): (+ve ion mode) 501.0 [M+Na]⁺; HRMS (API) (*m*/z): [M+1]⁺ calcd for C₂₀H₂₄CIN₂NaO₈ [M+1]⁺479.1192; found, 479.1194.

¹H and ¹³C NMR spectra of new compounds

¹³C NMR spectrum of **8a** (75 MHz, CDCl₃)

¹H NMR spectrum of **8b** (300 MHz, CDCl₃)

¹³C NMR spectrum of **8b** (75 MHz, CDCl₃)

111.62

=hlphyth

an in the law time to

55.40 52.45 49.17 47.67 22.86 20.85 20.79 20.74

0

¹³C NMR spectrum of **8c** (75 MHz, CDCl₃)

¹³C NMR spectrum of 8d (75 MHz, CDCl₃)

¹H NMR spectrum of **8e** (300 MHz, CDCl₃)

¹³C NMR spectrum of **8e** (75 MHz, CDCl₃)

¹H NMR spectrum of **8f** (300 MHz, CDCl₃)

¹³C NMR spectrum of **8f** (75 MHz, CDCl₃)

¹³C NMR spectrum of **8g** (75 MHz, CDCl₃)

¹³C NMR spectrum of **9a** (75 MHz, D₂O)

¹³C NMR spectrum of **9b** (75 MHz, D₂O)

 13 C NMR spectrum of **9c** (75 MHz, D₂O)

 13 C NMR spectrum of **9d** (75 MHz, D₂O)

 13 C NMR spectrum of **9e** (75 MHz, D₂O)

 13 C NMR spectrum of **9f** (75 MHz, D₂O)

¹³C NMR spectrum of **9g** (75 MHz, D₂O)

¹³C NMR spectrum of **10a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **10b** (100 MHz, CDCl₃)

¹³C NMR spectrum of **10c** (100 MHz, CDCl₃)

 13 C NMR spectrum of **11a** (100 MHz, D₂O)

 13 C NMR spectrum of **11b** (100 MHz, D₂O)

 13 C NMR spectrum of **11c** (100 MHz, D₂O)

¹³C NMR spectrum of **12a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **12b** (100 MHz, CDCl₃)

¹³C NMR spectrum of **12c** (100 MHz, CDCl₃)

f1 (ppm) ¹³C NMR spectrum of **12d** (100 MHz, CDCl₃)

 13 C NMR spectrum of **13a** (100 MHz, D₂O)

¹³C NMR spectrum of **13b** (100 MHz, D₂O)

¹³C NMR spectrum of 13c (100 MHz, D_2O)

 13 C NMR spectrum of **13d** (100 MHz, D₂O)

¹³C NMR spectrum of **15** (100 MHz, CDCl₃)

¹³C NMR spectrum of **16** (100 MHz, CDCl₃)

Computational Chemistry

Molecular Modeling studies were performed using "Molecular Operating Environment (MOE) version 2008.10", Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, H3A 2R7, Canada. The simulated compounds were built using the builder interface of the MOE program and subjected to energy minimization using the standard Forcefield MMFF94x calculations. The distance between the triazole N-1 and C-1 of the phenyl ring in reference inhibitors **5** and **6**; or between C4-nitrogen and C1 of the phenyl ring in the new derivatives was measured using the standard "atom to atom" distance measurement tool in the modeling software. Structures alignments of the built compounds were performed using the flexible alignment function in the software, setting the parameters to the following: Iteration limit = 200, failure limit = 20, energy cut-off = 10, enabling both "forcefield charges calculation prior to search" and "Stochastic conformational search". The top scoring aligned structures were always picked from the output database.

Biological Screening

The neuraminidase activity and neuraminidase inhibition of purified hPIV-3 was assayed using a method adapted from Potier et al⁴ and based on a previously described^{1, 2} end-point measurement of the relative fluorescence of 4-methylumbelliferone, the product of the hPIV-3 HN enzymatic hydrolysis of MUN (Sigma-Aldrich, St Louis, MO).

Briefly, purified hPIV-3, inhibitors and MUN were diluted in neuraminidase reaction buffer (NaOAc 50 mM, CaCl₂ 5 mM, pH 4.6). Neuraminidase activity of the virus was initially measured to determine the lowest virus concentration to be used in the assays to obtain a maximal fluorescence signal at least 5 times higher than the background for the experiment. Neuraminidase inhibition (NI) assays were done in duplicate. For each concentration tested, 2 μ L of purified hPIV-3 and 4 μ L of 2.5X inhibitor solution (1X final) was added to each well. The plate was kept at room temperature for 20 min before 4 μ L of 5 mM MUN (2 mM final) was added to each well. The plate was then incubated at 37 °C for 30 min with agitation (1000 rpm) and the enzymatic reaction was stopped by the addition of 190 μ L of glycine buffer (glycine 0.25 M, pH 10.4) to each well. A negative control was included by the addition of MUN only to virus and then the enzymatic reaction stopped at t = 0. Relative fluorescence (RF) was measured with a Victor 3 multilabel reader (PerkinElmer, Waltham, MA). Data were processed by background subtraction (negative control RF) and then analysed with GraphPadPrism 4 (GraphPad Software Inc., La Jolla, CA) to calculate IC₅₀ values (nonlinear regression (curve fit), Dose-response - inhibition, 3 parameter logistic). For each inhibitor, the concentration that reduced the maximal neuraminidase activity (RF) by 50% was considered to be the NI IC₅₀ value.

References

- 1. P. Guillon, L. Dirr, I. M. El-Deeb, M. Winger, B. Bailly, T. Haselhorst, J. C. Dyason and M. von Itzstein, *Nature communications*, 2014, **5**, 5268.
- 2. I. M. El-Deeb, P. Guillon, M. Winger, T. Eveno, T. Haselhorst, J. C. Dyason and M. von Itzstein, *Journal of medicinal chemistry*, 2014, **57**, 7613-7623.
- 3. D. Ye, W. J. Shin, N. Li, W. Tang, E. Feng, J. Li, P. L. He, J. P. Zuo, H. Kim, K. Y. Nam, W. Zhu, B. L. Seong, K. T. No, H. Jiang and H. Liu, *Eur J Med Chem*, 2012, **54**, 764-770.
- 4. M. Potier, L. Mameli, M. Belisle, L. Dallaire and S. B. Melancon, *Analytical biochemistry*, 1979, **94**, 287-296.