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AlPO substitution mechanisms
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Undoped AlPO framework

M3+: Co, Mn, Fe

M2+: Mg, Zn

M5+

M4+: Si, Ti

2 x M4+: Si

Type I Substitution Type II Substitution Type III Substitution

Scheme S1: Detailing the isomorphous metal-substitution mechanisms available in AlPO 
materials. The Al(III) and P(V)  T-atom tetrahedral in the AlPO framework can be replaced 
with a range of transition-metals, creating isolated active sites.

In-depth structural and textural characterisation
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Figure S1: Powder XRD patterns of the AlPO-5 and undoped RuAlPO-5 systems, both 
showing phase pure AFI.
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Table S1: ICP, textural and unit-cell parameters for ruthenium-doped AlPO-5 (RuAlPO-5) 
and undoped AlPO-5. 

Metal Analysis P6cc unit cell 
parameters

Al/wt% P/wt% Ru/wt%

BET 
SSA/m2g-1

a/Å c/Å
RuAlPO-5-O-400 16.5 20.7 2.90 282 13.70 8.40
AlPO-5 16.7 18.1 - 295 13.69 8.43

Complementary EXAFS and Mass spectrometry data
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Figure S2: The derivative of μ(E) for standard compounds and RuAlPO-5-AS, confirming the 
intermediary characteristics of RuAlPO-5-AS between Ru(IV)O2 and Ru(III)Cl3.xH2O.  
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Figure S3: The variations in the magnitude of the k2 weighted Fourier transform, contrasting 
the as-synthesised material with one heated to 179 oC under oxidative conditions.
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Figure S4: Mass-spec data detailing the evolution of gases between specific scans in the 
RuAlPO-5-O series, showing the evolution of hydrogen gas.
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Figure S5: The variations in the magnitude of the k2 weighted Fourier transform, examining 
the effect of oxidative calcination on ruthenium with temperature, focussing on the metallic-
phase transformations (189 oC). 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6

|χ
(R

)|
/Å

-2

R/Å

RuAlPO-5-O-189

RuO2.xH2O

Ru metal

Figure S6: Variations in the magnitude of the k2 weighted Fourier transform,, examining the 
effect of oxidative calcination on ruthenium with temperature, focussing on the metallic-
phase transformations (189 oC), contrasting with known standards.
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Figure S7: Changes in the magnitude of the k2 weighted Fourier transform, probing the 
effect of oxidative annealing on ruthenium with temperature and contrasting the as-
synthesised oxidic environment with that obtained under more extreme annealing 
conditions. 
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Figure S8: Variations in the magnitude of the k2 weighted Fourier transform, examining the 
effect of inert annealing on ruthenium with temperature and contrasting the as-synthesised 
oxidic environment with that obtained under more extreme annealing conditions. 
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TEM and EDS images

Figure S9: TEM images of the RuAlPO-5-O series at increasing temperature showing small 
nanoparticles (< 3 nm) in all cases. Increases in temperature lead to significant nanoparticle 
agglomeration.

RuAlPO-5-O-200

Figure S10: Energy dispersive X-ray spectroscopy images highlighting the elemental 
distribution of RuAlPO-5-O-200. The figures show ruthenium is present in areas where the 
oxygen, aluminium and phosphorus signals are weakest suggesting metallic ruthenium. 
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RuAlPO-5-O-300

Figure S11: Energy dispersive X-ray spectroscopy images highlighting the elemental 
distribution of RuAlPO-5-O-300. The figures show ruthenium is present in areas where the 
oxygen, aluminium and phosphorus signals are weaker suggesting metallic ruthenium with 
some oxidic content.

RuAlPO-5-O-400

Figure S12: Energy dispersive X-ray spectroscopy images highlighting the elemental 
distribution of RuAlPO-5-O-400. The figures show oxygen intensity is invariant of ruthenium 
distribution, suggesting ruthenium oxide has been formed. 
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RuAlPO-5-I-200

RuAlPO-5-I-300

RuAlPO-5-I-400

Figure S13: TEM images of the RuAlPO-5-I series at increasing temperature showing small 
nanoparticles (< 3 nm) in all cases. Increases in temperature lead to significant nanoparticle 
agglomeration.

Further catalytic data
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Figure S14: Comparing the effect of annealing temperature under air atmosphere on the 
peroxide efficiency of RuAlPO-5 for the oxidation of cyclohexane. Conditions: 13 mmol 
cyclohexane, 13 mmol TBHP (70 wt% in H2O), 0.05 g of RuAlPO-5 and 5 ml of acetone, 70 oC, 
6 hours.
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Substituted RuAlPO-5 calcined in N2

Figure S15: Comparing the effect of annealing temperature under nitrogen atmosphere on 
the peroxide efficiency of RuAlPO-5 for the oxidation of cyclohexane. Conditions: 13 mmol 
cyclohexane, 13 mmol TBHP (70 wt% in H2O), 0.05 g of RuAlPO-5 and 5 ml of acetone, 70 oC, 
6 hours.
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Figure S16: Comparing the effect of annealing temperature under nitrogen atmosphere on 
the conversion and selectivity profiles of RuAlPO-5 for the oxidation of cyclohexane. 
Conditions: 13 mmol cyclohexane, 13 mmol TBHP (70 wt% in H2O), 0.05 g of RuAlPO-5 and 5 
ml of acetone, 70 oC, 6 hours.
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Figure S17: Comparing the selectivity of different ruthenium containing systems for the 
oxidation of cyclohexane. Conditions: 13 mmol cyclohexane, 13 mmol TBHP (70 wt% in H2O), 
0.05 g of RuAlPO-5 and 5 ml of acetone, 70 oC, 6 hours.

Repeatability
Table S2: Detailing reproducibility between experiments and different batches of catalysts. 
All units are in mol%.

Sample Conversion Yield(Cyol) Yield(Cyone) Yield(Diol)
RuAlPO-5-I-400 17.7 2.6 6.5 8.7
RuAlPO-5-I-400 
Repeat Reactiona

15.1 4.2 6.2 4.5

RuAlPO-5-O-200 20.7 4.2 6.6 9.9
RuAlPO-5-O-200 
Separate Batchb

18.1 5.1 4.1 9.0

Conditions: 13 mmol cyclohexane, 13 mmol TBHP (70 wt% in H2O), 0.05 g of RuAlPO-5 and 5 
ml of acetone, 70 oC, 6 hours.

a) This reaction was performed with the same batch of catalyst that the characterisation and 
catalysis was performed on. The error in conversion is within 3%, the threshold for GC analysis.
b) This reaction was performed on a separate batch of catalyst to show the reproducibility of 
this method. Note errors are all within 2.6 mol%, lower than that of the threshold for GC error.


