Exploiting the Interplay of Quantum Interference and Backbone Rigidity on Electronic Transport in Peptides: A Step Towards Bio-Inspired Quantum Interferometers

Jingxian Yu,* John R. Horsley, and Andrew D. Abell*

ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

*e-mail: jingxian.yu@adelaide.edu.au; andrew.abell@adelaide.edu.au

Table of Contents

1. General information	Page S2
2. Synthesis of peptides	Page S3
3. ROESY spectra for peptides 1-4 and 5-7	Page S24
4. IR spectrum for peptide 7	Page S28
5. Analysis of computational models for peptides 5, 6 and 7, 8	Page S29
5.1 Characteristics of N-protected β -strand peptides 5 and 6	Page S30
5.2 Characteristics of N -protected helical peptides 7 and 8	Page S31
6. Electrochemical measurements	Page S32
7. Electronic transport simulations	Page S33
8. Geometric similarity of peptide backbones in molecular junctions	Page S43
8.1 Geometric similarity of β -strand peptide backbones (9 and 10)	Page S43
8.2 Geometric similarity of helical peptide backbones (11 and 12)	Page S43
9. ¹ H NMR spectra for target peptides and key intermediates	Page S45
10. References	Page S60

1. General Information

Chemicals

Fmoc-Aib-OH, Boc-Aib-OH, Fmoc-Lys(Boc)-OH, Boc-Lys(Cbz)-OH, Boc-Glu(OBzl)-OH, H-Leu-OMe, H-Ala-OMe, 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide HCl (EDC·HCl), Fmoc-OSu, 2-chlorotrityl chloride polystyrene resin, 1-hydroxy-7-azabenzotrizole (HOAt) and 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uranium hexafluorophosphate methanaminium (HATU) were purchased from GL Biochem (Shanghai) Ltd, China. Dichloromethane (DCM), diethyl ether (Et₂O), ethyl acetate (EtOAc), methanol and ethanol were purchased from Ajax Finechem Pty Ltd (Australia). Piperidine, acetonitrile, propan-2-ol, potassium carbonate, and *N*,*N*-dimethylformamide (DMF) were purchased from Merck, Australia. Anhydrous *N*,*N*-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrafuran (THF), dioxane, 2,2,2-trifluoroethanol (TFE), trifluoroacetic acid (TFA), 4 M HCl/dioxane solution, cysteamine, methyl iodide, Pd/C and diisopropylethylamine (DIPEA) were purchased from Sigma-Aldrich, Australia. SOCl₂, CH₃COOH and NaOH were purchased from Carbon Solutions Inc., USA. Ferrocenylmethylamine^{1, 2} was prepared as published. All solvents and reagents were used without purification unless noted.

High-Performance Liquid Chromatography

The synthetic peptides were analyzed and purified by reverse phase HPLC, using an HP 1100 LC system equipped with a Phenomenex C18 column (250x4.6 mm) for analytical traces and a Phenomenex C18 column (250 x 21.2 mm) for purification, a photodiode array detector, and a Sedex evaporative light scattering detector. Water/TFA (100/0.1 by v/v) and ACN/TFA (100/0.08 by v/v) solutions were used as aqueous and organic buffers.

NMR Spectroscopy.

¹H NMR spectra were recorded in DMSO-d₆ or CDCl₃-d solutions using a Varian Gemini-300 NMR. ¹³C NMR and two-dimensional NMR experiments utilized COSY, ROESY, HSQC and HMBC were obtained on a Varian Inova 600 MHz spectrometer. Chemical shifts are reported in ppm (δ) using TMS (0.00 ppm) as the internal standard. Signals are reported as s (singlet), d (doublet), t (triplet) or m (multiplet).

Mass Spectroscopy

Low resolution mass spectral data were analyzed using a Finnigan MAT LCQ spectrometer with MS/MS and ESI probe, utilizing XCalibur software. High resolution mass spectral data were analyzed using an Ultimate 3000 RSL HPLC (Thermo Fisher Scientific Inc., MA) and an LTQ Orbitrap XL ETD using a flow injection method, with a flow rate of 5 μ L/min. The HPLC flow is interfaced with the mass spectrometer using the Electrospray source (Thermo Fisher Scientific Inc., MA). Mass spectra were obtained over a range of 100 < m/z < 1000. Data was analyzed using XCalibur software (Version 2.0.7, Thermo Fisher Scientific).

FTIR Spectroscopy

Infrared spectra were collected on a Perkin Elmer Spectrum 100 FT-IR spectrometer, with attenuated total reflectance (ATR) imaging capabilities, fitted with a ZnSe crystal, with an average reading taken from 4 scans at 4 cm^{-1} resolution.

2. Synthesis of peptides

Scheme S1. The synthetic steps for building blocks S1 and S2.

Fmoc-Lys(Boc)-OH (4.19 g, 8.9 mmol) was dissolved in 40 mL dry methanol (over molecular sieves) and cooled to 0 °C. Thionyl chloride (2.5 mL) was added dropwise to the methanolic solution over 5 min. The mixture was stirred at 0 °C for 30 min, then warmed to room temperature and further stirred overnight. The volatiles were removed to yield the intermediate Fmoc-Lys-OMe, an off-white solid (3.80 g, quant). The resulting residue and CH₃COOH (2.0 mL) were dissolved in anhydrous DMF (15 mL) and stirred at rt under an N₂ atmosphere. HATU (6.50 g, 17.1mmol) and DIPEA (6.0 mL) were added, and the mixture stirred for 48 h. The solvent was removed and the residue taken up in EtOAc (200 mL) and H₂O (200 mL). The organic layer was separated and washed with NaHCO₃ (200 mL), brine (200 mL) and dried over Na₂SO₄. The volatiles were removed *in vacuo* to reveal a white solid (3.91 g, quant). The resulting residue was dissolved in the mixture of THF (23.0 mL) and methanol (16.0 mL). 9.0 mL of NaOH solution (1.6 M, aqueous) was added to the mixture, and the reaction stirred at rt for 18 h. The solvent was removed *in vacuo* and the residue redissolved in H₂O (200mL), washed with Et₂O (200 mL). The aqueous layer was separated and dried over MgSO₄. The solvent was removed *in vacuo* and the residue redissolved in H₂O (200mL), washed with

Compound S1

The amphoteric residue (1.85 g, 8.0 mmol) was dissolved in para-dioxane (20.0mL). A solution of NaHCO₃ (2.20 g in 20.0 mL H₂O, 16.0mmol, 2equiv) was added followed by Fmoc-OSu (2.90 g, 8.0mmol, 1 equiv). The reaction mixture was stirred overnight at rt after which the volatiles

were removed under reduced pressure. The residue was dissolved in 2.5% NaHCO₃ and washed with Et₂O (3x20 mL). The aqueous layer was then acidified to pH 4 by dropwise addition of 6 M aqueous HCl and extracted with EtOAc (3x50 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄ and the solvent removed under reduced pressure to give the product as a white solid (2.51 g, 76%).

¹H NMR (300 MHz, DMSO-d₆): δ 7.88 (d, 2H, arom*H*), 7.81 (t, 1H, NHCH₂), 7.41 (t, 2H, arom*H*), 7.72 (d, 2H, arom*H*), 7.62 (d, 1H, NHCH), 7.46-7.28 (m, 4H, arom*H*), 4.32-4.16 (d, 3H, CH& CH₂in Fmoc), 3.90 (m, 1H, NHC*H*), 3.06-2.96 (m, 2H, NHCH₂), 1.78 (s, 3H, CH₃), 1.64 (m, 2H, CH₂), 1.36 (m, 4H, 2xCH₂).

MS: $[M+H]^+_{calcd} = 411.2$, $[M+H]^+_{found} = 411.2$.

Compound S2

The amphoteric residue (3.93 g, 17.0 mmol) and NaHCO₃ (2.86 g, 34.0 mmol) were dissolved in water (60.0 mL). A solution of $(\text{Boc})_2\text{O}$ (5.60 g in 60.0 mL para-dioxane) was added. The reaction mixture was stirred overnight at rt after which the volatiles were removed under reduced pressure. The residue was redissolved in 200 mL of water, washed with EtOAc (200 mL). The aqueous layer was then acidified to pH 3 by dropwise addition of 6 M aqueous HCl and extracted with EtOAc (3x100 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and the solvent removed under reduced pressure to give the product as a white solid (4.40 g, 89%).

¹H NMR (300 MHz, DMSO-d₆): δ 7.78(t, 1H, NHCH₂), 7.05 (d, 1H, NHCH), 3.80 (m, 1H, NHCH), 3.06-2.92 (m, 2H, NHCH₂), 1.76 (s, 3H, CH₃), 1.58 (m, 2H, CH₂), 1.40-1.20 (m, 13H, Boc & 2xCH₂).

MS: $[M+H]^+_{calcd} = 289.2$, $[M+H]^+_{found} = 289.2$.

Scheme S2. The final synthetic steps for lactam-bridged β-strand peptides

 K_2CO_3 (982 mg, 7.11 mmol) was suspended in anhydrous DMF (20 mL). Boc-Glu(OBzl)-OH (2.0 g, 5.93 mmol) was added, followed by MeI (1.01 g, 7.11 mmol, 443µL). The reaction was stirred at rt under an N₂ atmosphere for 18 h. The solvent was removed and the residue taken up in EtOAC (200 mL) and H₂O (200 mL). The pH was adjusted to pH 3-4 and the organic layer separated and washed with brine (200 mL) and dried over NaSO₄. The solvent was removed *in vacuo* to reveal golden oil (1.80 g, 86%).

¹H NMR (300 MHz, DMSO-d₆): δ 7.40-7.30 (m, 6H, benzene, N*H*), δ 5.09 (s, 2H, OC*H*₂), δ 4.06-3.98 (m, 1H, Ca*H*), δ 3.61 (s, 3H, OC*H*₃), δ 2.45 (dd, 2H, C*H*₂, *J*=9.8, 5.8 Hz), δ 2.01-1.74 (m, 2H, C*H*₂), δ 1.37 (s, 9H, Boc).

Compound **S3** (877 mg, 2.50 mmol) was dissolved in DCM (5 mL). TFA (5 mL) was added dropwise and the reaction stirred at rt for 3 h. The solvent was removed *in vacuo* to reveal golden oil (1.21 g, quant).

¹H NMR (300 MHz, DMSO-d₆): δ 8.44 (br s, 3H, NH), 7.37 (m, 5H, benzene), 5.11 (s, 2H, OCH₂), 4.10 (br s, 1H, C α H), 3.72 (s, 3H, OCH₃), 2.56 (m, 2H, CH₂), 2.04 (m, 2H, CH₂).

Compound S5

Boc-Lys(Z)-OH (1.00 g, 2.63 mmol) and HCl·H₂N-Leu-OMe (572 mg, 3.16 mmol) were dissolved in anhydrous DCM (20 mL) and stirred at rt under an N₂ atmosphere. Anhydrous DIPEA (1.6 mL), EDC·HCl (552 mg, 2.89 mmol) and HOAt (393 mg, 2.89 mmol) were added and the solution stirred for 36 h. DCM (30 mL) and H₂O (50 mL) were added and the pH adjusted to pH 2-3. The organic layer was separated and washed with brine (50 mL) and dried over MgSO₄. The solvent was removed *in vacuo* to yield clear oil (1.07 g, 81%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.11 (d, 1H, NH, J=7.6 Hz), 7.40-7.30 (m, 5H, benzene), 7.23 (t, 1H, NH, J=10.5 Hz), 6.79 (d, 1H, NH, J=8.1 Hz), 5.00 (s, 2H, OCH₂), 4.33-4.26 (m, 1H, CaH), 3.90 (d, 1H, CaH, J=5.4 Hz), 3.60 (s, 3H, OCH₃), 2.97 (d, 2H, CH₂NH, J=5.9 Hz), 1.70-1.22 (m, 9H, 4xCH₂, CH), 1.37 (s, 9H, Boc), 0.90-0.82 (m, 6H, 2xCH₃ Leu).

MS: $[M+Na]^+_{calcd} = 530.2$, $[M+Na]^+_{found} = 530.2$.

Compound **S5** (1.06 g, 2.10 mmol) was dissolved in THF (8.37 mL) and methanol (2.13 mL). NaOH (125 mg, 3.14 mmol) was dissolved in H_2O (2.13 mL) and added to the solution and stirred at rt for 24 h. The THF was removed *in vacuo* and EtOAC (50 mL) and H_2O (50 mL) added. The pH was adjusted to pH 2-3, the organic layer separated and washed with brine (50 mL) and dried over MgSO₄. The solvent was removed *in vacuo* to yield a clear solid (904 mg, 87%).

¹H NMR (300 MHz, DMSO-d₆): δ 7.93 (d, 1H, N*H*, *J*=7.7 Hz), 7.40-7.30 (m, 5H, benzene), 7.23 (t, 1H, N*H*, *J*=10.2 Hz), 6.79 (d, 1H, N*H*, *J*=8.3 Hz), 5.00 (s, 2H, OCH₂), 4.22 (dd, 1H, Ca*H*, *J*=14.2, 8.5 Hz), 3.89 (d, 1H, Ca*H*, *J*=4.8 Hz), 2.96 (d, 2H, CH₂NH, *J*=5.6 Hz), 1.70-1.22 (m, 9H, 4xCH₂, C*H*), 1.37 (s, 9H, Boc), 0.90-0.82 (m, 6H, 2xCH₃ Leu).

MS: $[M+Na]^+_{calcd} = 516.2$, $[M+Na]^+_{found} = 516.2$.

Compound S4 (627 mg, 2.50 mmol) and compound S6 (1.12 g, 2.27 mmol) were dissolved in anhydrous DCM (42 mL) and stirred at rt under an N₂ atmosphere. Anhydrous DIPEA (1.58 mL), HATU (949 mg, 2.50 mmol) and HOAt (308 mg, 2.27 mmol) were added and the solution stirred for 42 h. DCM (60 mL) and H₂O (100 mL) were added and the pH adjusted to pH 3. The organic layer was separated and washed with brine (100 mL) and dried over MgSO₄. The solvent was removed *in vacuo* to reveal a white solid, which was purified by column chromatography on silica gel (70/30 EtOAC/PE), yielding (785 mg, 48%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.31 (d, 1H, N*H*, *J*=7.2 Hz), 7.77 (d, 1H, N*H*, *J*=7.9 Hz), 7.40-7.30 (m, 10H, 2x benzene), 7.23 (t, 1H, N*H*, *J*=9.0 Hz), 6.87 (d, 1H, N*H*, *J*=8.0 Hz), 5.09 (s, 2H, OCH₂), 4.99 (s, 2H, OCH₂), 4.30 (dd, 2H, 2x C α H, *J*=13.5, 6.2 Hz), 3.89-3.82 (m, 1H, C α H), 3.59 (s, 3H, OCH₃), 2.99-2.91 (m, 2H, CH₂NH), 2.43 (t, 2H, CH₂, *J*=7.5 Hz), 2.07-1.22 (m, 11H, 5x CH₂, CH), 1.36 (s, 9H, Boc), 0.89-0.82 (m, 6H, (CH₃)₂ Leu).

MS: $[M+Na]^+_{calcd} = 749.3$, $[M+Na]^+_{found} = 749.3$.

Compound S7 (464 mg, 0.639 mmol) was dissolved in (methanol over molecular sieves, 10 mL) and stirred at rt under an N_2 atmosphere for 10 min. Pd/C (15% w/w, 70 mg) was added. A H_2 balloon was fitted under vacuum and the solution stirred at rt for a further 24 h. The solution was filtered through celite and washed with methanol (3x 20 mL), and the solvent removed *in vacuo* to yield a white solid (232 mg, 72%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.89 (d, 1H, N*H*, *J*=6.5 Hz), 8.02 (d, 1H, N*H*, *J*=8.5 Hz), 6.78 (d, 1H, N*H*, *J*=8.0 Hz), 4.33 (dd, 1H, Ca*H*, *J*=14.4, 9.0 Hz), 4.23 (t, 1H, Ca*H*, *J*=9.8 Hz), 3.95 (dd, 1H, Ca*H*, *J*=14.0, 7.4 Hz), 3.58 (s, 3H, OCH₃), 2.03-1.26 (m, 15H, 7x CH₂, CH), 1.36 (s, 9H, Boc), 0.87-0.81 (m, 6H, 2xCH₃ Leu).

MS: $[M+Na]^+_{calcd} = 525.3$, $[M+Na]^+_{found} = 525.3$.

Compound **S9**

Compound **S8** (127 mg, 0.253 mmol) was suspended in anhydrous DMF (26 mL) and anhydrous THF (20 mL) and sonicated. EDC HCl (238 mg, 1.25 mmol), HOAt (170 mg, 1.25 mmol) and DIPEA (435 μ L) were dissolved in anhydrous DMF (15 mL) and anhydrous THF (8 mL) and the solution stirred at rt under an N₂ atmosphere. The compound **S8** mixture was placed into a syringe pump and added to the coupling reagents at the rate of 30 μ L/min, and stirred for 48 h. The crude product was purified using reverse phase HPLC to yield a white solid (39 mg, 31%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.25 (d, 1H, N*H*, *J*=7.4 Hz), 8.06 (d, 1H, N*H*, *J*=8.2 Hz), 7.42 (m, 1H, N*H*), 6.43 (d, 1H, N*H*, *J*=7.3 Hz), 4.43 (m, 1H, CaH), 4.34 (m, 1H, CaH), 4.05 (m, 1H, CaH), 3.60 (s, 3H, OCH₃), 3.32 (m, 1H, CHHNH), 2.71 (m, 1H, CHHNH), 2.28-1.04 (m, 13H, 6x CH₂, CH), 1.36 (s, 9H, Boc), 0.90-0.84 (m, 6H, 2xCH₃ Leu).

¹³C NMR (150 MHz, DMSO-d₆):δ 172.4, 172.1, 171.4, 170.7, 158.0, 154.5, 77.8, 53.2, 51.7, 50.8, 50.4, 48.5, 41.0, 36.9, 31.4, 28.4, 28.1, 27.9, 25.5, 24.6, 23.9, 23.8, 21.7.

MS: $[M+Na]^+_{calcd}=507.2$, $[M+Na]^+_{found}=507.2$.

Compound **S9** (125 mg, 0.258 mmol) was dissolved in THF (2.6 mL) and methanol (750 μ L). NaOH (15 mg, 0.387 mmol) was dissolved in H₂O (250 μ L) and added to the acid, and the reaction stirred at rt for 17 h. The solvent was removed *in vacuo* and the residue redissolved in EtOAc (25 mL) and H₂O (25 mL). The pH was adjusted to pH 2 and the organic layer separated and washed with brine (25 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to reveal a white solid (95 mg, 78%).

¹H NMR (500 MHz, DMSO-d₆): δ 8.15-8.01 (m, 2H, 2x N*H*), 7.37 (br s, 1H, N*H*), 6.43 (d, 1H, N*H*, *J*=7.2 Hz), 4.37-4.29 (m, 2H, 2x Cα*H*), 4.06 (dd, 1H, Cα*H*, *J*=14.1, 7.0 Hz), 3.30 (m, 1H, C*H*HNH), 2.73 (m, 1H, CH*H*NH), 2.28-1.06 (m, 13H, 6x C*H*₂, C*H*), 1.36 (s, 9H, Boc), 0.89-0.83 (m, 6H, 2xC*H*₃ Leu).

MS: $[M+Na]^+_{calcd} = 493.2$, $[M+Na]^+_{found} = 493.2$.

Peptide 5

Compound **S10** (95 mg, 0.202 mmol) and ferrocenylmethylamine were dissolved in anhydrous DMF (4 mL) and stirred at rt under an N₂ atmosphere. HATU (84 mg, 0.222 mmol), HOBt (27 mg, 0.202 mmol) and DIPEA (140 μ L) were added, and the mixture stirred for 48 h. The solvent was removed and the residue taken up in EtOAc (25 mL) and H₂O (25 mL). The pH was adjusted to pH 3 and the organic layer separated and washed with NaHCO₃ (25 mL), brine (25 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* to yield a brown solid (98 mg, 73%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.24-8.19 (m, 2H, 2x NH), 7.63 (t, 1H, NH, J=5.8 Hz), 7.49 (br s, 1H, NH), 6.37 (d, 1H, NH, J=7.4 Hz), 4.32 (m, 1H, CaH), 4.20 (m, 1H, CaH), 4.18-4.05 (m, 9H, Cp), 4.09 (m, 1H, CaH), 3.98 (d, 2H, CH₂Fc, J=5.7 Hz), 3.32 (m, 1H, CHHNH), 2.75 (m, 1H, CHHNH), 2.28-1.01 (m, 13H, 6xCH₂, CH), 1.36 (s, 9H, Boc), 0.89-0.83 (m, 6H, 2xCH₃ Leu).

¹³C NMR (150 MHz, DMSO-d₆):δ 172.8, 172.3, 172.0, 170.9, 155.0, 86.3, 78.3, 73.4, 70.7, 69.8, 69.3, 69.2, 68.8, 68.7, 67.98, 67.93, 67.6, 67.5, 60.1, 53.5, 52.4, 52.2, 46.3, 40.9, 38.0, 31.5, 30.7, 28.5, 26.3, 24.4, 23.3, 22.2.

MS: $[M+Na]^+_{calcd} = 690.3$, $[M+Na]^+_{found} = 690.3$.

Peptide 1

Peptide 5 (86 mg, 0.129 mmol) was dissolved in TFE (2 mL) and 4M HCl in dioxane (1 mL) added dropwise. The reaction was stirred at rt for 25 min. The solvent was removed *in vacuo* to reveal a brown solid. The crude product was purified using reverse phase HPLC to yield a sandy brown solid (15 mg, 21%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.54 (d, 1H, N*H*, *J*=7.9 Hz), 8.36 (d, 1H, N*H*, *J*=7.6 Hz), 8.07 (br s, 3H, N*H*), 7.79 (br s, 1H, N*H*), 7.55 (m, 1H, N*H*), 4.41-4.34 (m, 2H, 2 x Ca*H*), 4.19-3.93 (m, 9H, Cp), 4.07 (br s, 2H, CH₂Fc), 3.88 (br s, 1H, Ca*H*), 3.28 (m, 1H, C*H*HNH), 2.79 (m, 1H, CH*H*NH), 2.32-1.05 (m, 13H, 6 x CH₂, C*H*), 0.90-0.87 (dd, 6H, (CH₃)₂ Leu, *J*=9.3, 6.6 Hz).

¹³C NMR (150 MHz, DMSO-d₆): δ 171.63, 171.29, 170.68, 168.36, 157.88, 70.92, 69.38, 68.92, 68.37, 67.33, 67.14, 51.81, 51.77, 51.58, 45.45, 41.49, 40.04, 37.45, 36.69, 30.19, 28.76, 25.20, 24.26, 23.98, 22.99, 22.63, 21.86, 19.50.

HRMS (*m*/*z*): [M+H]⁺ calcd=568.2586, found=568.2582.

Scheme S3. The final synthetic steps for linear β-strand peptides

Compound S11

Compound **S2** (367 mg, 1.27 mmol) was dissolved in anhydrous DCM (10 mL). H-Leu-OMe (275 mg, 1.52 mmol) was added and stirred at rt under an N₂ atmosphere. Anhydrous DIPEA (883 μ L) was added, followed by EDC·HCl (267 mg, 1.40 mmol) and HOAt (173 mg, 1.27 mmol), and the reaction mixture stirred for 24 h. DCM (20 mL) and H₂0 (30 mL) were added and the pH adjusted to pH 2-3. The organic layer was collected, washed with brine (30 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to yield pale golden oil (373 mg, 71%).

¹H NMR (300 MHz, d-DMSO) δ 8.12 (d, 1H, NH, J=7.6 Hz), δ 7.79 (br s, 1H, NH), δ 6.80 (d, 1H, NH, J=8.2 Hz), δ 4.29 (m, 1H, C α H), δ 3.89 (m, 1H, C α H), δ 3.60 (s, 3H, OCH₃), δ 3.02-2.85 (m, 2H, CH₂NH), δ 1.78 (s, 3H, CH₃), δ 1.66-1.23 (m, 9H, 4xCH₂, CH), δ 1.37 (s, 9H, Boc), δ 0.90-0.81 (m, 6H, (CH₃)₂Leu).

MS: $[M+Na]^+_{calcd} = 438.2$, $[M+Na]^+_{found} = 438.2$.

Compound **S11** (357 mg, 0.86 mmol) was dissolved in THF (2.5 mL) and methanol (714 μ L) and the mixture stirred. NaOH (52 mg, 1.29 mmol) was dissolved in H₂O (714 μ L) and this solution was added to the acid and stirred at rt for 31 h. The THF was removed *in vacuo* and the residue dissolved in EtOAC (25 mL) and H₂O (25 mL). The pH was adjusted to pH 2-3 and the organic layer collected and washed with brine (25 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to reveal a clear solid (294 mg, 85%).

¹H NMR (300 MHz, DMSO-d₆): δ 7.94 (d, 1H, NH, J=7.8 Hz), 7.77 (t, 1H, NH, J=9.0 Hz), 6.79 (d, 1H, NH, J=8.2 Hz), 4.22 (dd, 1H, C α H, J=13.9, 8.5 Hz), 3.88 (d, 1H, C α H, J=4.8 Hz), 3.00-2.85 (m, 2H, CH₂NH), 1.77 (s, 3H, CH₃), 1.70-1.23 (m, 9H, 4xCH₂, CH), 1.36 (s, 9H, Boc), 0.89-0.81 (m, 6H, 2xCH₃Leu).

MS: $[M+Na]^+_{calcd} = 400.2$, $[M+Na]^+_{found} = 400.2$.

Compound S13

Compound **S12** (275 mg, 0.69 mmol) and HCl·H₂N-Ala-OMe (105 mg, 0.754 mmol) were dissolved in anhydrous DMF (11.5 mL) and stirred at rt under an N₂ atmosphere. Anhydrous DIPEA (477 μ L), HATU (287 mg, 0.754 mmol) and HOAt (93 mg, 0.686 mmol) were added and the reaction stirred for 25 h. The solvent was removed and the residue dissolved in EtOAC (50 mL) and H₂O (50 mL). The pH was adjusted to pH 3 and the organic layer washed with NaHCO₃ (50 mL) and brine (50 mL), before being dried over MgSO₄. The solvent was removed *in vacuo* to yield a pale golden oil (265 mg, 79%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.36 (d, 1H, NH, J=6.8 Hz), 7.77 (t, 1H, NH, J=9.0 Hz), 7.72 (d, 1H, NH, J=8.2 Hz), 6.87 (d, 1H, NH, J=8.1 Hz), 4.35 (d, 1H, CaH, J=7.6 Hz), 4.23 (m, 1H, CaH), 3.87 (m, 1H, CaH), 3.60 (s, 3H, OCH₃), 3.03-2.90 (m, 2H, CH₂NH), 1.77 (s, 3H, CH₃), 1.70-1.34 (m, 9H, 4xCH₂, CH), 1.37 (s, 9H, Boc), 1.27 (d, 3H, CH₃, Ala, J=7.3 Hz), 0.89-0.81 (m, 6H, 2xCH₃Leu).

MS: $[M+Na]^+_{calcd} = 509.3$, $[M+Na]^+_{found} = 509.3$.

Compound **S13** (246 mg, 0.51 mmol) was dissolved in THF (1.72 mL) and methanol (492 μ L), and the mixture stirred. NaOH (30 mg, 0.75 mmol) was dissolved in H₂O (492 μ L) and this solution was added to the acid and stirred at rt for 27 h. The THF was removed *in vacuo* and the residue dissolved in EtOAC (35 mL) and H₂O (35 mL). The pH was adjusted to pH 2 and the organic layer collected and washed with brine (35 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to reveal clear oil (189 mg, 79%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.19 (d, 1H, N*H*, *J*=7.0 Hz), 7.78 (t, 1H, N*H*, *J*=9.9 Hz), 7.72 (d, 1H, N*H*, *J*=8.3 Hz), 6.88 (d, 1H, N*H*, *J*=8.1 Hz), 4.35 (dd, 1H, C α *H*, *J*=15.5, 7.7 Hz), 4.16 (m, 1H, C α *H*), 3.86 (d, 1H, C α *H*, *J*=4.7 Hz), 3.03-2.83 (m, 2H, CH₂NH), 1.77 (s, 3H, CH₃), 1.70-1.34 (m, 9H, 4xCH₂, C*H*), 1.37 (s, 9H, Boc), 1.25 (d, 3H, CH₃Ala, *J*=7.3 Hz), 0.89-0.82 (m, 6H, 2xCH₃Leu).

MS: $[M+Na]^+_{calcd} = 495.2$, $[M+Na]^+_{found} = 495.2$.

Peptide 6

Compound **S14** (164 mg, 0.347 mmol) and ferrocenylmethylamine (82 mg, 0.382 mmol) were dissolved in anhydrous DMF (5.8 mL) and stirred at rt under an N₂ atmosphere. Anhydrous DIPEA (242 μ L), HATU (145 mg, 0.382 mmol) and HOAt (47 mg, 0.347 mmol) were added and the reaction stirred for 66 h. The solvent was removed and the residue dissolved in EtOAC (35 mL) and H₂O (35 mL). The pH was adjusted to pH 2 and the organic layer washed with NaHCO₃ (35 mL) and brine (35 mL), before being dried over MgSO₄. The solvent was removed *in vacuo* to yield a brown solid (192 mg, 83%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.05-7.95 (m, 2H, 2xN*H*), 7.86-7.76 (m, 2H, 2xN*H*), 6.93 (d, 1H, N*H*, *J*=7.5 Hz), 4.35-3.82 (m, 14H, C*H*₂Fc, Cp, 3xCα*H*), 3.02-2.92 (m, 2H, C*H*₂NH), 1.77 (s, 3H, C*H*₃), 1. 70-1.34 (m, 9H, 4xC*H*₂, C*H*), 1.37 (s, 9H, Boc), 1.22 (d, 3H, C*H*₃ Ala, *J*= 8.1 Hz), 0.89-0.82 (m, 6H, (C*H*₃)₂ Leu).

¹³C NMR (150 MHz, DMSO-d₆): 172.1, 171.5, 171.4, 168.5, 155.3, 123.1, 122.6, 115.5, 86.0, 78.0, 77.3, 68.9, 68.35, 68.30, 67.5, 67.3, 54.4, 50.7, 48.0, 40.8, 38.6, 37.4, 31.5, 31.3, 30.6, 28.8, 28.2, 28.1, 23.9, 23.1, 22.6, 21.4.

MS: $[M+Na]^+_{calcd} = 692.3$, $[M+Na]^+_{found} = 692.3$.

Peptide 2

Peptide 6 (120 mg, 0.179 mmol) was dissolved in TFE (4 mL) and 4M HCl in dioxane (3 mL) added dropwise. The solution was stirred for 25 min., the solvent removed *in vacuo* and the residue washed with MeOH (2x10 mL). The crude product was purified using reverse phase HPLC to yield a sandy brown solid (25 mg, 25%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.48 (d, 1H, NH, J=8.1 Hz), 8.16 (d, 1H, NH, J=7.3 Hz), 8.07 (d, 3H, NH, J=4.0 Hz), 8.01 (br s, 1H, NH), 7.77 (t, 1H, NH, J=5.4 Hz), 4.39 (dd, 1H, CaH, J=14.1, 8.8 Hz), 4.31 (m, 1H, CaH), δ 4.20-3.94 (m, 11H, Cp, CH₂Fc), 3.76 (dd, 1H, CaH, J=11.2, 5.7 Hz), 2.99 (dd, 2H, CH₂NH, J=13.1, 6.8 Hz), 1.78 (s, 3H, CH₃), 1.71-1.61 (m, 3H, CH₂, CH), 1.49-1.45 (m, 2H, CH₂), 1.39-1.35 (dd, 2H, CH₂, J=14.3, 7.1 Hz), 1.32-1.26 (dt, 2H, CH₂, J=14.9, 7.2 Hz), 1.22 (d, 3H, CH₃, J=6.3 Hz), 0.90-0.86 (dd, 6H, (CH₃)₂ Leu, J=15.2, 6.6 Hz).

¹³C NMR (150 MHz, DMSO-d₆): δ 171.8, 171.5, 169.3, 168.8, 158.3, 71.3, 69.8, 69.3, 68.8, 67.8, 67.5, 52.4, 51.5, 48.5, 41.2, 38.6, 37.8, 31.3, 24.4, 23.5, 23.0, 21.9, 18.8.

HRMS (m/z): $[M+H]^+$ calcd=570.2737; found=570.2743.

Scheme S4. The final synthetic steps for lactam-bridged 3₁₀-helical peptides.

Boc-Lys(Cbz)-OH (1.68 g, 4.4 mmol) and HCl \cdot H₂N-Aib-OMe (880 mg, 4.4 mmol) were dissolved in anhydrous DMF (28 mL) and stirred at rt under an N₂ atmosphere. HOAt (780 mg, 5.7 mmol), EDC \cdot HCl (1.09 g, 5.7 mmol) and DIPEA (3.50 mL, 20 mmol) were added, and the

mixture stirred for 26 h. The solvent was removed and the residue taken up in EtOAc (200 mL) and H_2O (200 mL). The organic layer separated and washed with NaHCO₃ (200 mL), brine (200 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (EtOAc: Petroleum ether 50:50 by v/v) to reveal the dipeptide Boc-Lys(Cbz)-Aib-OMe, a white solid (1.70 g, 81%).

The resulting was dissolved in DCM (10 mL) and TFA (10 mL) added dropwise. The reaction was stirred at rt for 3 h. The solvent was removed *in vacuo* to reveal brown oil. The oil and Boc-Aib-OH (880 mg, 4.4 mmol) were dissolved in anhydrous DMF (25 mL) and stirred at rt under an N₂ atmosphere. HOAt (884 mg, 6.5 mmol), EDC·HCl (1.24 g, 6.5 mmol) and DIPEA (3.5 mL, 20 mmol) were added, and the mixture stirred for 40 h. The solvent was removed and the residue taken up in EtOAc (200 mL) and H₂O (200 mL). The organic layer separated and washed with NaHCO₃ (200 mL), brine (200 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (EtOAc: Petroleum ether 70:30 by v/v) to yield the product, a white solid (1.98 g, 80%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.04 (s, 1H, N*H*), 7.35-7.25 (m, 6H, N*H*, benzene), 7.16 (t, 1H, N*H*CH₂), 7.08 (br s, 1H, N*H*), 4.96 (s, 2H, OCH₂), 4.09 (m, 1H, Cα*H*), 3.51 (s, 3H, OCH₃), 2.92 (m, 2H, NHCH₂), 1.76 (s, 3H, COCH₃), 1.65-1.45 (m, 2H, CH₂), 1.40-1.10 (m, 25H, 2xCH₂, Boc, 4xCH₃).

MS: $[M+H]^{+}_{calcd} = 565.3$, $[M+H]^{+}_{found} = 565.3$.

Compound S16

Boc-Glu(OBzl)-OH (1.68 g, 5 mmol) and HCl[·]H₂N-Aib-OMe (1.00 g, 5 mmol) were dissolved in anhydrous DMF (28 mL) and stirred at rt under an N₂ atmosphere. HOAt (884 mg, 6.50 mmol), EDC[·]HCl (1.24 g, 6.50 mmol) and DIPEA (3.50 mL, 20 mmol) were added, and the mixture stirred for 26 h. The solvent was removed and the residue taken up in EtOAc (200 mL) and H₂O (200 mL). The organic layer separated and washed with NaHCO₃ (200 mL), brine (200 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (EtOAc: Petroleum ether 50:50 by v/v) to reveal the dipeptide Boc-Glu(OBzl)-Aib-OMe, a white solid (1.98 g, 92%).

Boc-Glu(OBzl)-Aib-OMe (453 mg, 1.04 mmol) was dissolved in DCM (5 mL) and TFA (5 mL) added dropwise. The reaction was stirred at rt for 3 h. The solvent was removed *in vacuo* to reveal brown oil. The resulting oil and Boc-Aib-OH (210 mg, 1.04 mmol) were dissolved in anhydrous DMF (2 mL) and stirred at rt under an N₂ atmosphere. HOBt (207 mg, 1.35 mmol), EDC HCl (260 mg, 1.35 mmol) and DIPEA (0.75 mL, 4.16 mmol) were added, and the mixture stirred for 40 h. The solvent was removed and the residue taken up in EtOAc (50 mL) and H₂O (50 mL). The organic layer separated and washed with NaHCO₃ (50 mL), brine (50 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (EtOAc: Petroleum ether 70:30 by v/v) to yield the product, a white solid (430 mg, 80%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.15 (s, 1H, N*H*), 7.50 (d, 1H, N*H*, *J*=6.0 Hz), 7.42-7.25 (m, 5H, benzene), 7.16 (s, 1H, N*H*), 5.08 (s, 2H, OC*H*₂), 4.17 (m, 1H, Ca*H*), 3.52 (s, 3H, OC*H*₃), 2.35 (t, 2H, C*H*₂), 1.98 (m, 1H, C*H*H), 1.83 (m, 1H, CH*H*), 1.45-1.20 (m, 12H, 4xC*H*₃).

MS: $[M+H]^+_{calcd} = 522.3, [M+H]^+_{found} = 522.3.$

Compound S17

Compound **S15** (2.23 g, 4.0 mmol) was dissolved in THF (12.0 mL) and methanol (8.0 mL). 4.0 mL of NaOH solution (1.6 M, aqueous) was added to the mixture, and the reaction stirred at rt for 18 h. The solvent was removed *in vacuo* and the residue redissolved in EtOAc (200 mL) and H₂O (200mL). The pH was adjusted to pH 3 and the organic layer separated and washed with brine (200 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to reveal a white solid (2.29 g).

Compound **S16** (2.08 g, 4.0 mmol) was dissolved in DCM (5 mL) and TFA (5 mL) added dropwise. The reaction was stirred at rt for 3 h. The solvent was removed *in vacuo* to reveal brown oil. The resulting oil and the above hydrolysed compound **S15** (2.29 g) were dissolved in anhydrous DMF (28 mL) and stirred at rt under an N₂ atmosphere. HOAt (707 mg, 5.2 mmol), EDC HCl (1.0 g, 5.2 mmol) and DIPEA (2.8 mL, 16 mmol) were added, and the mixture stirred for 40 h. The solvent was removed and the residue taken up in EtOAc (200 mL) and H₂O (200 mL). The organic layer separated and washed with NaHCO₃ (200 mL), brine (200 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude product was purified by column chromatography (EtOAc: Petroleum ether 90:10 by v/v) to yield the title product, a white solid (2.10 g, 55%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.32-8.06 (m, 2H, 2xN*H*), 7.93-7.14 (m, 15H, 5xN*H*, 2x benzene), 5.06 (s, 2H, OCH₂), 4.98 (s, 2H, OCH₂), 4.05 (m, 1H, Ca*H*), 3.94-3.67 (m, 1H, Ca*H*), 3.53 (s, 3H, OCH₃), 2.95 (m, 2H, CH₂NH), 2.44 (m, 2H, CH₂), 2.14-1.22 (m, 41H, 4xCH₂, 8xCH₃, Boc).

MS: $[M+H]^+_{calcd} = 954.5$, $[M+H]^+_{found} = 954.5$.

Compound **S17** (1.73 g, 1.81 mmol) was dissolved in (methanol over molecular sieves, 20 mL). Pd/C (15% w/w, 260 mg) was added and the mixture stirred. A H₂ balloon was fitted under vacuum and the solution stirred at rt for a further 18 h. The solution was filtered through celite and washed with methanol (3x 20 mL), and the solvent removed *in vacuo* to yield a white solid (1.26 g, 95%).

¹H NMR (300 MHz, DMSO-d₆): δ 8.60 (br s, 1H, N*H*), 8.29 (br s, 1H, N*H*), 8.19 (br s, 1H, N*H*), 7.65 (br s, 1H, N*H*), 7.56 (br s, 1H, N*H*), 7.47 (br s, 1H, N*H*), 3.90 (m, 1H, C α *H*), 3.74 (m, 1H, C α *H*), 3.55 (s, 3H, OCH₃), 2.75-1.52 (m, 12H, 6xCH₂), 1.41-1.30 (m, 24H, 8xCH₃), 1.34 (s, 9H, Boc).

MS: $[M+H]^+_{calcd} = 730.4$, $[M+H]^+_{found} = 730.4$.

Compound S19

EDC HCl (815 mg, 4.27 mmol), HOBt (576 mg, 4.27 mmol) and DIPEA (1.5 mL) were dissolved in anhydrous DMF (255 mL), and the solution stirred at rt under an N₂ atmosphere. Compound **S18** (622 mg, 0.853 mmol) was dissolved in anhydrous DMF (25 mL), placed into a syringe and pumped into the solution containing the coupling agents at the rate of 20 μ L/min, and stirred for 68 h. The solvent was removed and the residue taken up in EtOAc (100 mL) and H₂O (100 mL). The pH was adjusted to pH 3, the organic layer separated and washed with NaHCO₃ (100 mL), brine (100 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* to give the crude product, which was purified using reverse phase HPLC, to yield a white solid (90 mg, 15%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.33 (br s, 1H, N*H*), 8.04 (br s, 1H, N*H*), 7.79-7.70 (m, 2H, 2x N*H*), 7.63 (m, 1H, N*H*), 7.53 (s, 1H, N*H*), 7.45 (d, 1H, N*H*, *J*=8.0 Hz), 3.80-3.73 (m, 2H, 2x C α *H*), 3.54 (s, 3H, OC*H*₃), 3.07 (m, 1H, C*H*HNH), 2.90 (m, 1H, CH*H*NH), 2.15-1.22 (m, 10 H, 5x C*H*₂), 1.41-1.27 (m, 24H, (C*H*₃)₈), 1.34 (s, 9H, Boc).

¹³C NMR (150 MHz, DMSO-d₆):δ 175.6, 174.8, 174.7, 174.6, 172.9, 171.6, 171.5, 158.7, 158.5, 79.3, 79.2, 56.7, 56.6, 56.2, 55.3, 55.2, 52.1, 40.3, 28.6, 26.0, 25.2, 25.1.

MS: $[M+H]^+_{calcd} = 712.4$, $[M+H]^+_{found} = 712.4$.

Compound S20

Compound **S19** (380 mg, 0.53mmol) was dissolved in THF (3.80 mL) and H_2O (3.80 mL). NaOH (85 mg) solid was added and the reaction stirred at rt for 2 h. The reaction was quenched by 1M HCl (2 mL) aqueous solution. The solvent was removed *in vacuo* to reveal a white solid (514 mg). The resulting intermediate (190 mg, 0.27 mmol) was dissolved in DCM (5 mL) and TFA (2 mL) added dropwise. The reaction was stirred at rt overnight. The solvent was removed *in vacuo* to reveal a brown oil (350 mg).

The resulting oil and triethylamine (150 μ L) were dissolved in a solvent mixture of water (5 mL) and acetonitrile (3 mL). A solution of Z-OSu (82 mg in 2 mL acetonitrile) was added. The reaction mixture was stirred overnight at rt, after which the volatiles were removed under reduced pressure. The residue was redissolved in MeOH (5 mL), and purified using reverse phase HPLC to yield a white solid (120 mg).

¹H NMR (600 MHz, DMSO-d₆): δ 8.01 (d, 1H, N*H*), 7.79 (s, 1H, N*H*), 7.77 (m, 1H, N*H*), 7.71 (t, 1H, N*H*), 7.61 (d, 1H, N*H*), 7.58 (s, 1H, N*H*), 7.40 (s, 1H, N*H*). 7.38-7.26 (m, 5H, arom*H*), 5.05 (dd, 2H, Cbz C*H*₂), 4.12 (m, 1H, Cα*H*), 3.72 (m, 1H, Cα*H*), 3.06 (m, 2H, C*H*₂NH), 2.04 (m, 1H, CH*H*CO), 1.92 (m, 1H, CH*H*CO), 1.85 (m, 1H, CH*H*CO), 1.54 (m, 1H, CH*H*CO), 1.48-1.09 (m, 26H, C*H*₂, 8x C*H*₃), 1.22 (m, 2H, C*H*₂).

MS: $[M+H]^+_{calcd} = 732.4$, $[M+H]^+_{found} = 732.4$.

Compound S21

Compound **S20** (120 mg, 0.16mmol) and ferrocenylmethylamine (60 mg, 0.27mmol) were dissolved in anhydrous DMF (2 mL) and stirred at rt under an N_2 atmosphere. EDC⁻HCl (67 mg),

HOAt (50 mg) and DIPEA (200 μ L) were added, and the mixture stirred for 36 h. The solvent was removed and the residue redissolved in MeOH (15 mL), and purified using reverse phase HPLC to yield a sandy brown solid (90 mg).

¹H NMR (600 MHz, DMSO-d₆): δ 8.05 (d, 1H, N*H*), 7.84 (d, 1H, N*H*), 7.82 (s, 1H, N*H*), 7.78 (s, 1H, N*H*), 7.74 (s, 1H, N*H*), 7.72 (t, 1H, N*H*), 7.44 (s, 1H, N*H*), 7.39-7.28 (m, 5H, arom*H*), 7.26 (t, 1H, N*H*), 5.06(dd, 2H, C*H*₂), 4.25-3.90 (m, 12H, Cp, C*H*₂Fc, Cα*H*), 3.70 (m, 1H, Cα*H*), 3.18 (m, 2H, CH₂C*H*₂NH), 1.99 (m, 2H, CH*H*CO), 1.85 (m, 1H, CH*H*CO), 1.54 (m, 1H, CH*H*CO), 1.48-1.19 (m, 28H, 2x C*H*₂, 8x C*H*₃).

MS: $[M+H]^+_{calcd}=929.9, [M+H]^+_{found}=929.9.$

Peptide 7

Compound **S19** (125 mg, 0.176 mmol) was dissolved in THF (1.25 mL) and H₂O (1.5 mL). NaOH aqueous solution (1.6 M, 352 μ L) was added and the reaction stirred at rt for 2 h. The solvent was removed *in vacuo* to reveal a white solid (157 mg, quant). The resulting intermediate (122 mg, 0.176 mmol) and ferrocenylmethylamine (75 mg, 0.352 mmol) were dissolved in anhydrous DMF (3.4 mL) and stirred at rt under an N₂ atmosphere. EDC HCl (37 mg, 0.194 mmol), HOAt (24 mg, 0.176 mmol) and DIPEA (122 μ L) were added, and the mixture stirred for 36 h. The solvent was removed *in vacuo* and the residue redissolved in MeOH (15 mL), and purified using reverse phase HPLC to yield a sandy brown solid (40 mg, 29%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.16 (br s, 1H, N*H*), 7.96 (s, 1H, N*H*), 7.86 (d, 1H, N*H*, *J*=3.9 Hz), 7.82 (s, 1H, N*H*), 7.70 (t, 1H, N*H*, *J*=12.0 Hz), 7.46 (s, 1H, N*H*), 7.35 (s, 1H, N*H*), 7.27 (br s, 1H, N*H*), 4.25-4.02 (m, 9H, Cp), 3.99-3.90 (m, 3H, C*H*₂Fc, Cα*H*), 3.71 (m, 1H, Cα*H*), 3.18 (m, 1H, C*H*HNH), 2.96 (m, 1H, CH*H*NH), 2.15-1.37 (m, 10H, 5xC*H*₂), 1.44-1.29 (m, 24H, 8 xC*H*₃), 1.34 (s, 9H, Boc).

¹³C NMR (150 MHz, DMSO-d₆):175.83, 175.37, 174.89, 173.61, 171.07, 170.75, 155.31, 86.55, 78.79, 68.66, 68.34, 66.99, 66.97, 66.92, 56.35, 56.29, 56.02, 55.70, 53.63, 38.12, 37.82, 33.63, 31.26, 31.02, 29.40, 28.97, 28.86, 28.66, 28.50, 28.19, 25.48, 24.55, 24.26, 22.96, 22.06.

HRMS: $[M]^+_{calcd} = 894.4302, [M]^+_{found} = 894.4303.$

Peptide 3

Peptide 7 (5 mg, 0.006 mmol) was dissolved in TFE (600 μ L) and 4M HCl in dioxane (200 μ L) added. The reaction was stirred at rt for 25 min. The solvent was removed *in vacuo* to reveal a light brown solid (quant). The crude product was purified using reverse phase HPLC to yield a sandy brown solid (2 mg, 45%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.30 (s, 1H, N*H*), 8.08 (s, 1H, N*H*), 7.75 (d, 1H, N*H*), 7.72 (m, 1H, N*H*), 7.54 (s, 1H, N*H*), 7.49 (m, 1H, N*H*), 7.33 (s, 1H, N*H*), 7.18 (t, 1H, N*H*), 4.25-3.90 (m, 12H, Cp, C*H*₂Fc, Cα*H*), 3.85 (m, 1H, Cα*H*), 3.04-2.90 (m, 2H, C*H*₂NH), 2.30-1.80 (m, 4H, 4 x CH*H*), 1.80-1.10 (m, 28H, 8 x C*H*₃, 2 x C*H*₂).

¹³C NMR (150 MHz, DMSO-d₆): 173.66, 172.51, 172.26, 171.96, 169.20, 166.27, 149.91,144.91, 105.60, 100.89, 85.08, 84.44, 78.30, 77.34, 68.80, 67.45, 68.34, 66.99, 66.97, 66.92, 56.38, 56.02, 55.70, 53.68, 44.99, 43.47, 38.72, 31.50, 29.46, 28.95, 28.53, 24.89.

HRMS (m/z): $[M]^+$ calcd=794.3778, found=794.3778.

Fmoc-Aib-OH loaded 2-chlorotrityl chloride resin ³ (2.00 g, typically 0.5 mmol/g of resin) was transferred into a sintered funnel fitted with a Teflon stopcock, and then rinsed with DCM (2x20 mL). After air drying, the Fmoc group was removed by reaction with a solution of 25% piperidine in DMF (20 mL) for 30 min followed by washing successively with DCM (3x20 mL), DMF (3 x 20 mL), and DCM (3 x 20 mL). To a solution of Fmoc-Aib-OH (1.00 g, 2 equiv) in DMF (4 mL) was added a 0.5 M solution of HATU in DMF (2 mL) followed by DIPEA (1.2 mL, 4-fold excess) and the resulting solution was added to the deprotected resin. The mixture was left for 2 h, with occasional stirring. The resin was isolated by filtration and rinsed successively with DCM (3 x 50 mL), DMF (3 x 50 mL), and DCM (3 x 50 mL). The sequence was repeated twice to ensure complete coupling. Using this protocol, the tetrapeptide (Aib₄) was produced by additions of Fmoc-Aib-OH. The peptide was then coupled with the building block **S1** to yield the appropriate pentapeptide. In the last cycle, Boc-Aib-OH was capped to the pentapeptide. The resulting hexapeptide was cleaved from the resin with 2% TFA / DCM (v/v). The crude products were purified by HPLC.

¹H NMR (300 MHz, DMSO-d₆): δ 8.22 (s, 1H, N*H*), 8.08 (s, 1H, N*H*), 7.78 (t, 1H, N*H*CH₂), 7.56 (s, 1H, N*H*), 7.32-7.20 (m, 3H, 3xN*H*), 3.85 (m, 1H, NHC*H*), 2.95 (m, 2H, NHC*H*₂), 1.75 (s, 3H, COC*H*₃), 1.68 (m, 2H, C*H*₂), 1.50-1.20 (m, 23H, 2xC*H*₂, Boc, 10xC*H*₃).

MS: $[M+H]^+_{calcd} = 714.4$, $[M+H]^+_{found} = 714.4$.

Peptide 8

Peptide **S22** (410 mg, 0.57mmol) and ferrocenylmethylamine (140 mg, 0.65mmol) were dissolved in anhydrous DMF (8 mL). DIPEA (400 μ L, 4 equiv), HOAt (160 mg, 2 equiv) and HATU (430 mg, 2equiv) were added. Reaction mixture was stirred overnight under an N₂ atmosphere at rt. The solvent was removed *in vacuo* and the peptide purified using reverse phase HPLC.

¹H NMR (300 MHz, DMSO-d₆): δ 8.21 (s, 1H, N*H*), 7.99 (s, 1H, N*H*), 7.73 (t, 1H, N*H*CH₂), 7.61 (s, 1H, N*H*), 7.57 (s, 1H, N*H*), 7.47 (br s, 1H, N*H*), 7.28 (s, 1H, N*H*), 7.20 (s, 1H, N*H*), 4.31-3.40 (m, 12H, Cp, Cα*H*, CH₂Fc), 2.95 (m, 2H, NHCH₂), 1.76 (s, 3H, COCH₃), 1.68 (m, 2H, CH₂), 1.45-1.20 (m, 43H, 2xCH₂, Boc, 10xCH₃).

¹³C NMR (150 MHz, DMSO-d₆): 175.59, 175.09, 175.08, 174.98, 174.82, 174.41, 173.73, 173.41, 172.80, 168.93, 158.29, 154.93, 78.59, 68.33, 66.94, 56.14, 56.03, 56.02, 55.63, 54.25, 42.69, 42.66, 42.62, 40.04, 38.24, 37.73, 35.12, 29.66, 28.91, 28.14, 25.39, 24.91, 24.70, 22.64, 22.57.

MS: $[M+H]^+_{calcd} = 911.5$, $[M+H]^+_{found} = 911.5$.

Peptide 4

Peptide **8** (10 mg, 0.012 mmol) was dissolved in TFE (600 μ L) and 4M HCl in dioxane (200 μ L) added. The reaction was stirred at rt for 25 min. The solvent was removed *in vacuo* to reveal a light brown solid (quant). The crude product was purified using reverse phase HPLC to yield a sandy brown solid (4 mg, 45%).

¹H NMR (600 MHz, DMSO-d₆): δ 8.51 (s, 1H, N*H*), 8.13 (s, 1H, N*H*), 8.10 (s, 3H, N*H*₃), 7.84 (t, 1H, N*H*CH₂), 7.68 (s, 1H, N*H*), 7.63 (s, 1H, N*H*), 7.43 (m, 1H, N*H*), 7.34 (br s, 1H, N*H*), 4.55-3.50 (m, 12H, Cp, Cα*H*, C*H*₂), 3.02 (m, 2H, NHC*H*₂), 1.76 (s, 3H, COC*H*₃), 1.68 (m, 2H, C*H*₂), 1.45-1.20 (m, 34H, 2 x C*H*₂, 10 x C*H*₃).

¹³C NMR (150 MHz, DMSO-d₆): δ 174.81, 174.35, 173.74, 173.47, 172.21, 171.81, 169.00, 128.89, 127.25, 121.35, 119.99, 109.72, 68.41, 66.90, 56.31, 56.10, 56.01, 55.93, 55.79, 53.26, 40.03, 38.30, 37.69, 30.45, 29.14, 28.87, 26.00, 25.38, 25.10, 24.97, 24.50, 24.20, 23.50, 23.37, 23.24, 22.60.

HRMS (m/z): $[M]^+$ calcd=811.4164, found=811.4162.

3. ROESY spectra for peptides 1-4 and 5-7

(c)

Figure S1. ROESY spectra of peptide 1, showing (a) NH (*i*) to NH (*i*+1), (b) C α H (*i*) to NH (*i*+1) and (c) C β H (*i*) to NH (*i*+1) correlations.

Figure S2. ROESY spectra of peptide **2**, showing (a) $C\alpha H(i)$ to NH(*i*+1) and (b) $C\beta H(i)$ to NH(*i*+1) correlations.

Figure S3. ROESY spectrum of peptide **3**, showing $C\alpha H(i)$ to NH(*i*+1), and $C\alpha H(i)$ to NH(*i*+2) correlations.

Figure S4. ROESY spectrum of peptide 4, showing $C\alpha H(i)$ to NH(*i*+1), and $C\alpha H(i)$ to NH(*i*+2) correlations.

Figure S5. ROESY spectra of peptide **5**, showing (a) $C\alpha H(i)$ to NH(*i*+1) and (b) $C\beta H(i)$ to NH(*i*+1) correlations.

Figure S6. ROESY spectrum of peptide **6**, showing $C\alpha H(i)$ to NH(*i*+1) correlation.

Figure S7. ROESY spectrum of peptide **7**, showing C α *H*(*i*) to N*H*(*i*+1) and medium range C α *H*(*i*) to N*H*(*i*+2) correlations.

4. IR spectrum for peptide 7

Figure S8. IR spectrum for peptide 7.

Figure S9. The lowest energy conformer for (a) peptide **5**, (b) peptide **6**, and (c) peptide **8**, optimized by the hybrid B3LYP method with 6-31G** basis set for all C, H, N, O atoms, and Lanl2dz basis set for Fe atom.

5.1 Characteristics of *N*-protected β -strand peptides **5** and **6**.

NH to NH distance (Å)	peptide 5	peptide 6
1-2	4.207	4.311
2-3	4.316	4.374
3-4	4.357	4.271
Distance from first to last carbonyl carbon (Å)	10.205	10.627

Table S1. NH to NH distances and total lengths for peptides 5 and 6.

Table S2. Dihedral angles for all residues in the lowest energy conformers for peptides 5 and 6.

	peptide 5		peptide 5 peptide 6	
	Φ	ψ	Φ	ψ
Residue 1	-150.366	122.799	-157.060	146.222
Residue 2	-126.024	158.039	-129.267	162.041
Residue 3	-118.162	151.364	-157.670	163.394

Table S3. Important characteristic correlations for peptides 5 and 6, with comparison to optimal β -strand values. (all distances in Å)

	peptide 5	peptide 6	optimal β-strand conformation
Length (first to last carbonyl)	10.205	10.627	
Distance (d)*	8.0	8.2	8.0^{4}
N-Leu to CO-Leu	2.4	2.4	2.5 ⁵
NH to NH (Average)	4.3	4.3	4.3 ⁵
αH to NH+1	2.5	2.5	2.2^{5}
β H ₂ to NH+1	3.5	3.6	$3.2 \text{ to } 4.5^5$

Note: * This distance (d) is defined between the *C* atom (*i*) and *N* atom (*i*+3). This is indicative of an optimal extended β -strand, as shown above.

5.2 Characteristics of *N*-protected helical peptides 7 and 8.

Residue	Hydrogen bond lengths (Å)	Distance (NH to NH) (Å)
1	2.074	2.996
2	2.184	2.817
3	2.061	2.837
4	2.157	2.779
5	2.198	2.680
6		2.602
Average	2.13	2.78
• Distance from first to last carbonyl carbon 11.989 Å.		

Table S4. Hydrogen bond lengths, NH to NH distances and total peptide length for peptide 7.

Table S5. Hydrogen bond lengths, NH to NH distances and total peptide length for peptide 8.

Residue	Hydrogen bond lengths (Å)	Distance (NH to NH) (Å)
1	2.123	2.987
2	2.073	2.790
3	2.535	2.743
4	2.140	2.832
5	2.066	2.804
6		2.680
Average	2.18	2.80
• Distance from first to last carbonyl carbon 11.816 Å.		

Table S6. Distances between $d\alpha N$, $d\beta N$ and dNN, characteristic of a 3_{10} -helix.

Distance	peptide 7	peptide 8	Ideal 3_{10} helix ⁵
dαN (Å)	3.5	3.5	3.4
dβN (Å)	3.0-4.1	3.0-4.1	2.9-4.4
Averaged NN (Å)	2.7	2.8	2.6

Table S7. Dihedral angles for all residues in the lowest energy conformers for peptides 7 and 8.

	peptide 7		pep	tide 8
	Φ	Ψ	Φ	Ψ
Residue 1	-64.156	-28.640	-64.329	-28.300
Residue 2	-55.638	-27.008	-56.464	-28.097
Residue 3	-52.532	-31.510	-59.037	-23.420
Residue 4	-55.092	-29.286	-55.844	-28.940
Residue 5	-70.469	-10.385	-53.315	-31.545
Residue 6	-66.630	-24.062	-66.533	-20.283
Average	-60.75	-25.14	-59.25	-26.76
Differs from	3.75°	4.86°	2.25°	3.24°
ideal 3 ₁₀ helix				

6. Electrochemical measurements

Figure S10. Cyclic voltammograms for (a) peptide **1** (b) peptide **2** (c) peptide **3** and (d) peptide **4** immobilized on SWCNTs/Au electrodes taken at 5, 2, 1, 0.5 and 0.2 V s⁻¹ (from top to centre).

7. Electronic transport simulations

Figure S11. Scheme of the gold leads used for building the extended molecule, with (a) side view and (b) top view of 4 x 4 x 6 gold layers for each lead. The face of the leads corresponds to a (111) surface. (c) A typical Au-peptide-Au setup for electronic transport simulation, with peptide **11** incorporated here.

Figure S12. Transmission spectra of (a) the constrained 9 and (b) linear peptide 10 at different bias voltages, indicating the molecular orbital energy levels in proximity to the Au Fermi level (E_f) .

Sample input for TranSIESTA calculation: 0V calculation for Au-peptide 11-Au

SystemName cyclic_0d00V SystemLabel cyclic_0d00V

SPECIES AND BASIS

Chemical species NumberOfSpecies 6 %block ChemicalSpeciesLabel 1 79 Au

2	16	S
3	1	Н
4	8	Ο
5	6	С
6	7	Ν

Species index, atomic number, species label# Species index, atomic number, species label

%endblock ChemicalSpeciesLabel

split
DZP
0.05 Ry
0.17888

K-points

%block kgrid_Monkhorst_Pack 4 0 0 0.0 0 4 0 0.0 0 0 10 0.5 %endblock kgrid_Monkhorst_Pack

UNIT CELL AND ATOMIC POSITIONS

UNIT CELL LatticeConstant 1.0 Ang %block LatticeParameters 11.5371600 11.5371600 47.0000000 90.00 90.00 60.00 %endblock LatticeParameters

General variables

ElectronicTemperature	300 K	
MeshCutoff	250.0 Ry	
xc.functional	GGA	# Exchange-correlation functional
xc.authors	PBE	-
SpinPolarized	.false.	# Exchange-correlation version

SolutionMethod	transiesta	
# SCF variables		
MaxSCFIterations DM.MixingWeight DM.Tolerance DM.UseSaveDM DM.NumberPulay	300 0.03 1.d-5 .true. 6	 # Maximum number of SCF iter # New DM amount for next SCF cycle # Tolerance in maximum difference # to use continuation files
# MD variables		
MD.FinalTimeStep MD.TypeOfRun MD.NumCGsteps MD.UseSaveXV	1 CG 000 .true.	
# Output variables		
WriteMullikenPop WriteBands SaveRho SaveDeltaRho SaveHS SaveElectrostaticPotential SaveTotalPotential WriteCoorXmol WriteMDXmol WriteMDhistory WriteEigenvalues	1 .false. .false. .false. false. .true. .false. .false. .false. .false.	
# Parallel variables		
Diag.ParallelOverK TS.UpdateDMCROnly	.false. .true.	
# Transiesta information		
# GF OPTIONS TS.ComplexContour.Emin TS.ComplexContour.NPole TS.ComplexContour.NCirc TS.ComplexContour.NLine TS.biasContour.NumPoints	-30.0 s 03 le 30 10 15	eV
# BIAS OPTIONS TS.Voltage	0.000000 eV	
# TBT OPTIONS TS.TBT.Emin TS.TBT.Emax	-5.00 eV +5.00 eV	

TS.TBT.NPoin	nts	1000			
TS.TBT.NEige	en	3			
TS.TBT.Eta		0.000001 Ry			
# Write hamilt	onian				
TS.SaveHS		true.			
TS.SaveLead		.false.			
# LEFT ELEC	TRODE				
TS.HSFileLeft	;	/Au111 left 4x4	TSHS		
TS.ReplicateA	1Left	1			
TS.ReplicateA	2Left	1			
TS.NumUsedA	AtomsLeft	64			
TS.BufferAtor	nsLeft	0			
# RIGHT ELE	CTRODE				
TS.HSFileRig	ht	./Au111 right 4y	4.TSH	S	
TS.ReplicateA	1Right	1 _ 0 _			
TS.ReplicateA	2Right	1			
TS.NumUsedA	AtomsRight	64			
TS.BufferAtor	nsRight	0			
# Atomic coor	dinates	200			
NumberOfAto	111S	290			
AtomicCoordi	natesFormat	Ang			
%block Atomi	cCoordinatesA	AndAtomicSpecies	s		
-1.30633011	-4.29114024	0.00000000	1	1	Au
1.57795989	-4.29114024	0.00000000	1	2	Au
4.46224989	-4.29114024	0.00000000	1	3	Au
7.34652989	-4.29114024	0.00000000	1	4	Au
-2.74847011	-1.79327024	0.00000000	1	5	Au
0.13580989	-1.79327024	0.00000000	1	6	Au
3.02009989	-1.79327024	0.00000000	1	7	Au
5.90438989	-1.79327024	0.00000000	1	8	Au
-4.19062011	0.70458976	0.00000000	1	9	Au
-1.30633011	0.70458976	0.00000000	1	10	Au
1.57794989	0.70458976	0.00000000	1	11	Au
4.46224989	0.70459976	0.00000000	1	12	Au
-5.63277011	3.20244976	0.00000000	1	13	Au
-2.74848011	3.20244976	0.00000000	1	14	Au
0.13580989	3.20244976	0.00000000	1	15	Au
3.02009989	3.20245976	0.00000000	1	16	Au
-1.30634011	-2.62590024	2.35502000	1	17	Au
1.57795989	-2.62590024	2.35502000	1	18	Au
4.46223989	-2.62590024	2.35502000	1	19	Au
7.34653989	-2.62589024	2.35502000	1	20	Au
-2.74848011	-0.12803024	2.35502000	1	21	Au
0.13580989	-0.12803024	2.35502000	1	22	Au
3 02009989	-0 12803024	2 35502000	1	23	An
5.90438989	-0.12803024	2.35502000	1	24	An
-4 19062011	2 36982976	2 35502000	1	25	A11
-1 30634011	2.36982976	2 35502000	1	25	Δ11
1 57795989	2.36983976	2 35502000	1	20	
4.46223989	2.36983976	2.35502000	1	28	Au

-5.63278011	4.86769976	2.35502000	1	29	Au
-2.74848011	4.86769976	2.35502000	1	30	Au
0.13579989	4.86769976	2.35502000	1	31	Au
3.02009989	4.86770976	2.35502000	1	32	Au
-2.74847011	-3.45853024	4.71004000	1	33	Au
0.13580989	-3.45853024	4.71004000	1	34	Au
3 02009989	-3 45851024	4 71004000	1	35	Au
5 90438989	-3 45851024	4 71004000	1	36	Au
-4 19062011	-0.96066024	4 71004000	1	37	A11
-1 30633011	-0.96066024	4 71004000	1	38	Διι
1 57795989	-0.96065024	4.71004000	1	30	Δu
1.57755909	-0.96065024	4.71004000	1	40	Au
-5 63277011	1 53720076	4.71004000	1	40	Au
-3.03277011	1.53720970	4.71004000	1	42	Au
-2.74040011	1.53720970	4.71004000	1	42	Au
2 02000080	1.55/219/0	4.71004000	1	43	Au
3.02009989	1.33/219/0	4./1004000	1	44	Au
-/.0/491011	4.03506976	4./1004000	1	45	Au
-4.19062011	4.0350/9/6	4./1004000	1	40	Au
-1.30634011	4.03508976	4./1004000	1	4/	Au
1.5//94989	4.03508976	4./1004000	1	48	Au
-1.30633011	-4.29114024	7.06505000	l	49	Au
1.57795989	-4.29114024	7.06505000	l	50	Au
4.46224989	-4.29114024	7.06505000	1	51	Au
7.34652989	-4.29114024	7.06505000	1	52	Au
-2.74847011	-1.79327024	7.06505000	1	53	Au
0.13580989	-1.79327024	7.06505000	1	54	Au
3.02009989	-1.79327024	7.06505000	1	55	Au
5.90438989	-1.79327024	7.06505000	1	56	Au
-4.19062011	0.70458976	7.06505000	1	57	Au
-1.30633011	0.70458976	7.06505000	1	58	Au
1.57794989	0.70458976	7.06505000	1	59	Au
4.46224989	0.70459976	7.06505000	1	60	Au
-5.63277011	3.20244976	7.06505000	1	61	Au
-2.74848011	3.20244976	7.06505000	1	62	Au
0.13580989	3.20244976	7.06505000	1	63	Au
3.02009989	3.20245976	7.06505000	1	64	Au
-1.30634011	-2.62590024	9.42006000	1	65	Au
1.57795989	-2.62590024	9.42006000	1	66	Au
4.46223989	-2.62590024	9.42006000	1	67	Au
7.34653989	-2.62589024	9.42006000	1	68	Au
-2.74848011	-0.12803024	9.42006000	1	69	Au
0.13580989	-0.12803024	9.42006000	1	70	Au
3.02009989	-0.12803024	9.42006000	1	71	Au
5.90438989	-0.12803024	9.42006000	1	72	Au
-4.19062011	2.36982976	9.42006000	1	73	Au
-1.30634011	2.36982976	9.42006000	1	74	Au
1.57795989	2.36983976	9.42006000	1	75	Au
4.46223989	2.36983976	9.42006000	1	76	Au
-5.63278011	4.86769976	9.42006000	1	77	Au
-2.74848011	4 86769976	9 42006000	1	78	Au
0 13579989	4 86769976	9 42006000	1	79	A11
3 02009989	4 86770976	9 42006000	1	80	A11
-2.74847011	-3 45853024	11 77507000	1	81	A11
0 13580080	-3 45853024	11 77507000	1	82	Δ11
3 02000000	-3 45851024	11 77507000	1	82	Δu
5.02009909	-3.45851024	11 77507000	1	8J	Δu
J.707J0707	-3.+3031024	11.//30/000	1	04	Au

-4.19062011	-0.96066024	11.77507000	1	85	Au
1.57795989	-0.96065024	11.77507000	1	86	Au
4.46223989	-0.96065024	11.77507000	1	87	Au
-5.63277011	1.53720976	11.77507000	1	88	Au
-2.74848011	1.53720976	11.77507000	1	89	Au
0.13580989	1.53721976	11.77507000	1	90	Au
3.02009989	1.53721976	11.77507000	1	91	Au
-7.07491011	4.03506976	11.77507000	1	92	Au
-4.19062011	4.03507976	11.77507000	1	93	Au
-1.30634011	4.03508976	11.77507000	1	94	Au
1.57794989	4.03508976	11.77507000	1	95	Au
-1.30633011	-0.96066024	11.77507000	1	96	Au
-1.41075011	-0.77467024	14.08591000	2	97	S
1.40779989	0.33930976	31,18682000	2	98	S
-0.71976011	-2.43406024	15.14023000	5	99	Ĉ
1.49259989	-1.81742024	16.15437000	5	100	Č
2 26117989	-1 31582024	17 46748000	5	101	Ċ
2.54887989	-2 59059024	18 37520000	5	102	Č
3 61701989	-0.61422024	17 05254000	5	103	Ċ
0 81174989	0 79306976	17 78933000	5	104	C
-0.28596011	1 51981976	18 69994000	5	105	C
0.01368989	3 07117976	18 80443000	5	105	C
-1 21212011	-0 28657024	20 23050000	5	107	C
-1 47192011	-0 78989024	21.73035000	5	107	C
-1 59821011	-2 36749024	21.75055000	5	100	C
-2 82460011	-0.11875024	22 22 768000	5	110	C
0.98654989	-0 59458024	22.22700000	5	111	C
1 96984989	-0 12829024	23 71787000	5	112	C
1 16321989	6 23156976	22 39127000	5	112	C
1 97191989	-1 26335024	22.37127000	5	113	C
3 42623989	0.09906976	23 14561000	5	115	C
2 08752989	5 34700976	23 33285000	5	116	C
1 07143989	2 28789976	23 70094000	5	117	C
1 45190989	4 74522976	24 65671000	5	118	C
0 45626989	3 50651976	24 51687000	5	119	C
-1 02282011	2 18846976	26 12832000	5	120	C
-1 43060011	1 89109976	27 64193000	5	120	C
-2 69582011	2 79175976	27.97835000	5	121	C
-1 78227011	0 35397976	27.80150000	5	122	C
0.96601989	1 73022976	28 70329000	5	123	Č
1 71961989	1 96397976	30.04346000	5	125	C
-0.04512011	5 46583976	21 70821000	5	126	C
-1 23663011	3 91507976	19 30582000	5	120	Č
-0.98542011	5 46205976	19.25883000	5	128	C
-0.01947011	3.12783976	25.89996000	6	120	Ň
1 46287989	1 1 5 3 5 8 9 7 6	24 39055000	6	130	N
0.08500989	-2 00224024	16 26639000	6	131	N
1 38072989	-0 37954024	18 28401000	6	132	N
-0.48564011	0 89598976	20.05738000	6	132	N
-0 37331011	-0 33744024	22.69385000	6	134	N
-0.32890011	2.28947976	28.63659000	6	135	N
-0.43160011	6.09015976	20.39196000	6	136	N
-1.26322011	6.14555976	18.21231000	4	137	0
1.49800989	1.07956976	27.73409000	4	138	Õ
-1.64412011	1.60241976	25.16964000	4	139	Õ
1.13941989	2.38779976	22.41473000	4	140	Ō

2.12610989	-2.14328024	15.10139000	4	141	0
1.03982989	1.25778976	16.61713000	4	142	0
-1.72767011	-0.92645024	19.24274000	4	143	0
1.46435989	-1.22628024	21.51990000	4	144	0
-0.12530011	-3.02223024	14.41995000	3	145	Н
-1.65170011	-2.93298024	15.46842000	3	146	Н
-0.40165011	-1.65921024	17.11174000	3	147	Н
1 23353989	-0 62917024	19 27518000	3	148	Н
3 08535989	-2 28708024	19 30436000	3	149	н
3 18189989	-3 31242024	17 81017000	3	150	н
1 60167989	-3 10107024	18 67004000	3	151	Н
3 41460989	0 29243976	16 44351000	3	152	н
4 23741989	-1 31487024	16 45049000	3	152	н
4 17680989	-0 32311024	17 97301000	3	154	н
-1 23600011	1 36963976	18 13231000	3	155	н
0.80638080	3 23664076	19/17075000	3	155	н
0.09090909	3 /1625076	17 78376000	3	150	н
-0.00960011	1 33370076	20.86381000	3	158	н
-0.68785011	0 106/0076	20.80381000	3	150	н
1 86036011	2 70042024	23.32047000	2	160	и П
-1.00050011	2 83065024	21 / 3071000	2	161	и П
-0.03893011	-2.63703024	21.43771000	3	162	н
-2.37237011	-2.08752024 -0.46713024	23 25751000	3	162	н
3 65238011	0.40432024	21.53985000	2	164	и П
-3.03238011	-0.40432024	21.33983000	3	165	и П
1 /2022080	1 1/037076	22.24391000	3	165	и П
2 6/1567080	-0.98374024	25.42497000	3	167	н
2.04507585	-0.98574024 -2.21654024	22.07330000	3	168	н
0.04706080	1 / 3202024	25, 23640000	2	160	и П
111578080	0 36750076	23.23049000	3	109	н
3 12607080	0.01811076	22.28021000	3	170	н
3 70020080	-0.82037024	22.55505000	3	171	н
1 82158989	6 62783976	21.57780000	3	172	Н
0 78172989	7 11900976	22.96013000	3	173	н
2 03367080	6 00116076	22.90013000	3	175	н
2.53507505	1 5253/076	22 729/1000	3	175	н
2.55888585	4.32334970 A.42311076	25 32280000	3	170	н
0.80805080	5 55308076	25.32280000	2	178	и П
0.09803989	3 80138076	23.19998000	3	170	и П
-0.43990011	2 52864076	26.71060000	2	19	и П
0.40193989	2 00222076	20.71000000	2	100	П П
2.01101909	2.00555970	29.83831000	2	101	п u
0.68246011	2.80102970	20.50242000	2	102	П П
-0.08240011	2.72403970	29.30342000	2	105	п
-2.44918011	3.8//839/0	27.90391000	2	184	п
-3.00398011	2.3/3229/0	29.00931000	2	105	п
-3.31424011	2.3048/9/0	27.23898000	2	180	п
-0.88432011	-0.2//42024	27.01902000	2	18/	п
-2.30997011	0.0/1109/0	27.00917000	2	100	п
-2.13226011	0.13939970	28.85528000	2	109	п
0.23136969	4.41311970	21.32439000	2	190	п
-0.72720011	J.4JJJ47/0 7 11/25076	22.40002000	2	191	п U
-0.33/1/011	1.11433710 277880076	20.27/33000	2	192	и П
-2.09122011	3.12007710	20 32584000	2	193	и Ц
1 57705080	0.70/57076	20.32304000	5 1	194	11
-1 30633011	_4 20115021	33.47507000	1 1	195	Au Au
1.50055011	1.27113024	55.77507000	T	170	nu

1.57795989	-4.29115024	33.47507000	1	197	Au
4.46224989	-4.29115024	33.47507000	1	198	Au
7.34653989	-4.29115024	33.47507000	1	199	Au
-2.74848011	-1.79329024	33.47507000	1	200	Au
0.13580989	-1.79329024	33.47507000	1	201	Au
3.02009989	-1.79329024	33.47507000	1	202	Au
5.90438989	-1.79329024	33.47507000	1	203	Au
-4.19062011	0.70457976	33.47507000	1	204	Au
-1.30633011	0.70457976	33.47507000	1	205	Au
4.46224989	0.70457976	33.47507000	1	206	Au
-5.63277011	3.20244976	33.47507000	1	207	Au
-2.74848011	3.20244976	33.47507000	1	208	Au
0.13580989	3.20244976	33.47507000	1	209	Au
3.02009989	3.20244976	33.47507000	1	210	Au
-1.30633011	-2.62591024	35.83008000	1	211	Au
1.57795989	-2.62591024	35.83008000	1	212	Au
4.46223989	-2.62591024	35.83008000	1	213	Au
7.34652989	-2.62591024	35.83008000	1	214	Au
-2.74847011	-0.12804024	35.83008000	1	215	Au
0.13581989	-0.12804024	35.83008000	1	216	Au
3.02010989	-0.12804024	35.83008000	1	217	Au
5.90437989	-0.12804024	35.83008000	1	218	Au
-4.19062011	2.36981976	35.83008000	1	219	Au
-1 30633011	2 36981976	35 83008000	1	220	Au
1 57795989	2.36981976	35 83008000	1	221	Au
4 46224989	2.36981976	35 83008000	1	222	Au
-5.63277011	4.86768976	35.83008000	1	223	Au
-2.74848011	4.86768976	35.83008000	1	224	Au
0.13580989	4.86768976	35.83008000	1	225	Au
3.02009989	4.86768976	35.83008000	1	226	Au
-2.74848011	-3.45853024	38.18509000	1	227	Au
0.13580989	-3.45853024	38.18509000	1	228	Au
3.02009989	-3.45853024	38.18509000	1	229	Au
5.90438989	-3.45853024	38.18509000	1	230	Au
-4.19061011	-0.96067024	38.18509000	1	231	Au
-1.30634011	-0.96066024	38.18509000	1	232	Au
1.57794989	-0.96066024	38.18509000	1	233	Au
4.46223989	-0.96066024	38.18509000	1	234	Au
-5.63276011	1.53719976	38.18509000	1	235	Au
-2.74847011	1.53719976	38.18509000	1	236	Au
0.13580989	1.53720976	38.18509000	1	237	Au
3.02009989	1.53720976	38.18509000	1	238	Au
-7.07491011	4.03506976	38.18509000	1	239	Au
-4.19062011	4.03506976	38.18509000	1	240	Au
-1.30633011	4.03506976	38.18509000	1	241	Au
1.57794989	4.03506976	38.18509000	1	242	Au
-1.30633011	-4.29115024	40.54011000	1	243	Au
1.57795989	-4.29115024	40.54011000	1	244	Au
4.46224989	-4.29115024	40.54011000	1	245	Au
7.34653989	-4.29115024	40.54011000	1	246	Au
-2.74848011	-1.79329024	40.54011000	1	247	Au
0.13580989	-1.79329024	40.54011000	1	248	Au
3.02009989	-1.79329024	40.54011000	1	249	Au
5.90438989	-1.79329024	40.54011000	1	250	Au
-4.19062011	0.70457976	40.54011000	1	251	Au
-1.30633011	0.70457976	40.54011000	1	252	Au

1.57795989	0.70457976	40.54011000	1	253	Au
4.46224989	0.70457976	40.54011000	1	254	Au
-5.63277011	3.20244976	40.54011000	1	255	Au
-2.74848011	3.20244976	40.54011000	1	256	Au
0.13580989	3.20244976	40.54011000	1	257	Au
3.02009989	3.20244976	40.54011000	1	258	Au
-1.30633011	-2.62591024	42.89512000	1	259	Au
1.57795989	-2.62591024	42.89512000	1	260	Au
4.46223989	-2.62591024	42.89512000	1	261	Au
7.34652989	-2.62591024	42.89512000	1	262	Au
-2.74847011	-0.12804024	42.89512000	1	263	Au
0.13581989	-0.12804024	42.89512000	1	264	Au
3.02010989	-0.12804024	42.89512000	1	265	Au
5.90437989	-0.12804024	42.89512000	1	266	Au
-4.19062011	2.36981976	42.89512000	1	267	Au
-1.30633011	2.36981976	42.89512000	1	268	Au
1.57795989	2.36981976	42.89512000	1	269	Au
4.46224989	2.36981976	42.89512000	1	270	Au
-5.63277011	4.86768976	42.89512000	1	271	Au
-2.74848011	4.86768976	42.89512000	1	272	Au
0.13580989	4.86768976	42.89512000	1	273	Au
3.02009989	4.86768976	42.89512000	1	274	Au
-2.74848011	-3.45853024	45.25013000	1	275	Au
0.13580989	-3.45853024	45.25013000	1	276	Au
3.02009989	-3.45853024	45.25013000	1	277	Au
5.90438989	-3.45853024	45.25013000	1	278	Au
-4.19061011	-0.96067024	45.25013000	1	279	Au
-1.30634011	-0.96066024	45.25013000	1	280	Au
1.57794989	-0.96066024	45.25013000	1	281	Au
4.46223989	-0.96066024	45.25013000	1	282	Au
-5.63276011	1.53719976	45.25013000	1	283	Au
-2.74847011	1.53719976	45.25013000	1	284	Au
0.13580989	1.53720976	45.25013000	1	285	Au
3.02009989	1.53720976	45.25013000	1	286	Au
-7.07491011	4.03506976	45.25013000	1	287	Au
-4.19062011	4.03506976	45.25013000	1	288	Au
-1.30633011	4.03506976	45.25013000	1	289	Au
1.57794989	4.03506976	45.25013000	1	290	Au

%endblock AtomicCoordinatesAndAtomicSpecies

- 8. Geometric similarity of peptide backbones in molecular junctions
- 8.1 Geometric similarity of β -strand peptide backbones (9 and 10).

Figure S13. The superposition of the two β -strand peptides, 9 and 10. (The light blue strand denotes the constrained peptide 9, while the grey strand represents the linear peptide 10).

8.2 Geometric similarity of helical peptide backbones (11 and 12).

Figure S14. The superposition of the two helical peptides, 11 and 12. (The grey strand denotes the constrained peptide 11, while the light blue strand represents the linear peptide 12).

Peptide	Secondary structure	Linear or constrained	S-S distance (Å)
9	β-strand	Constrained	18.13
10	β-strand	Linear	18.02
11	3 ₁₀ -helical	Constrained	17.36
12	3 ₁₀ -helical	Linear	17.38

 Table S8. Distances between S-S atoms in molecular junctions containing peptides 9-12.

9. ¹H NMR spectra for target peptides and key intermediates

- 380

10. References

- 1. P. D. Beer and D. K. Smith, *Journal of the Chemical Society-Dalton Transactions*, 1998, 417.
- 2. F. Ossola, P. Tomasin, F. Benetollo, E. Foresti and P. A. Vigato, *Inorganica Chimica Acta*, 2003, **353**, 292-300.
- 3. J. Yu, O. Zvarec, D. M. Huang, M. A. Bissett, D. B. Scanlon, J. G. Shapter and A. D. Abell, *Chemical Communications*, 2012, **48**, 1132–1134.
- 4. P. Gillespie, J. Cicariello and G. L. Olson, *Peptide Science*, 1997, **43**, 191.
- 5. K. Wüthrich, *NMR of proteins and nucleic acids*, Wiley, 1986.