Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Polyquinoneimines for Lithium Storage: More than Sum of Its Parts

Bingbing Tian,^{a,b} Guo-Hong Ning,^b Wei Tang,^b Chengxin Peng,^b Dingyi Yu,^b Zhongxin Chen,^b Yinglin Xiao,^a Chenliang Su^{a,b} and Kian Ping Loh^{a,b}

^a SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key
 Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong
 Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060,
 China

^b Department of Chemistry, Centre for Advanced 2D Materials (CA2DM) and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore, Singapore 117543, Singapore

K. P. Loh E-mail: chmlohkp@nus.edu.sg Fax: (+65) 67791691

Synthesis of Polyquinoneimines (PQIs)

All the materials. 2.6-diaminoanthraquinone (DAAP), starting 1,4,5,8naphthalenetetracarboxylic dianhydride (NTCDA), Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and pyromellitic dianhydride (PMDA) were purchased from Sigma-Aldrich. The PQIs were synthesized *via* a DMF (*N*,*N*-Dimethylformamide, anhydrous, 99.8%, Sigma-Aldrich) solution process. ¹⁻² Specifically in a typical PQI-1 composite procedure, NTCDA (268 mg, 1 mmol) was added into DMF solution (40 mL). Then the as prepared mixture was heated to 140 °C until all the NTCDA dissolved in the solution. After DAAP (238 mg, 1 mmol) was added to the solution, the reaction mixture was refluxed and stirred under N₂ gas at 140 °C, then product precipitated gradually. After 3 days, the as-obtained powder was filtrated and washed with methanol and acetone. After dried at 60 °C overnight, the brown powder of PQI-1 is obtained. The PQI-3 synthetic method is similar to PQI-1 whereas a claret-red powder obtained. We also prepared PQI-2 via the similar synthetic procedure using the low solubility PTCDA. In order to get a more fully reacted product, much longer reaction time (7 days) was implemented in this experiment. Finally, a gray-black PQI-2 powder obtained according to the above processing steps.

Scheme S1. Molecular structure of DAAP, NTCDA, PTCDA, PMDA, PQI-1, PQI-2 and

PQI-3.

Table S1 Theoretical gravimetric capacity of DAAP, NTCDA, PTCDA, PMDA, PQI-1, PQI-2 and PQI-3. (The theoretical gravimetric capacity of DAAP and dianhydrides are calculated based on a two electrons reaction in one monomer, the theoretical gravimetric capacity of PQIs are calculated based on a four electrons reaction in one monomer).

Sample	Theoretical gravimetric capacity (mAh g ⁻¹)
DAAP	225
NTCD	200
А	
PTCDA	137
PMDA	246
PQI-1	228
PQI-2	180
PQI-3	272

FTIR characterizations of PQIs and precursors:

The FTIR spectroscopy of PQI and their precursors are performed to confirm the successfully polymerization of PQIs. As shown in Fig. S1, the peaks around 1136 and 940 cm⁻¹ in the precursors (NTCDA, PTCDA and PMDA) are attributed to the stretch of the C-O-C band, which almost disappeared in PQIs after polymerization. All the PQIs have a new peak at the 1360 cm⁻¹ band compare with dianhydrides, which is ascribed to the C–N stretch, indicating that the polymerization is successful. Moreover, the absorbance signals at 3332 and 3423 cm⁻¹, attributed to the vibrational modes of the NH₂ bonds (primary amine) connected with benzene ring disappeared, also indicating the polycondensation reactions of dianhydrides with diamines. Furthermore, the characteristic band of C=O shifts to from 1772 cm⁻¹ to 1687 cm⁻¹. This phenomenon derives from conjugation, which leads to a shift in the band towards

lower wave number. The strong absorption at 1687 cm⁻¹ also suggests that the carbonyl groups are well retained.³⁻⁴

Fig. S1. FTIR curves of PQI-2 and PQI-3 with their precursors.

 Table S2 Characteristic FTIR band assignments of DAAP, NTCDA, PTCDA, PMDA, PQI-1,

 DOL 2

PQI-2	and	PQ.	I-3
-------	-----	-----	-----

Group	DAAP	NTCDA	PTCDA	PMDA	PQI-1	PQI-2	PQI-3
C=O, v _{as}	1659	1764	1774	1857	1713	1686ª	1770
C=O, v _s	1627	1728	1743	1771	1672		1718
C-N, v	1331	_	_	_	1346	1361	1352
C=C, v	1572	1728	1595	1722	1593	1589	1571
C-N, v C=C, v	1331 1572	- 1728	_ 1595	- 1722	1346 1593	1361 1589	1352 1571

a, broaden and overlapping.

TGA

TG analysis shows that the decomposition temperature of PQI-2 is ~500 °C in N₂ atmosphere, which is higher than PQI-1 and 3. This suggests that the PTCDA and DAAP polymerized and the PQI-2 has a best thermal stability compared with its analogues and precursors. However, PQI-3 shows an even poor thermal stability than its DAAP precursors, indicating a poor polymerization process or unstable polymerization products of PQI-3. This poor thermal stability of PQI-3 is responsible for the inferior cycling performance.

Fig. S2. TGA of PQI-2 and PQI-3 with their precursors.

Scanning Electron Microscope (SEM) images of PQIs:

The morphologies of the synthesized PQIs are shown in Fig. S3. PQI-1 and PQI-3 form a regular lamellar structure, but PQI-2 forms irregular rod sheet due to the low solubility of its precursor PTCDA.

Fig. S3. SEM images of PQI-1, PQI-2 and PQI-3 materials.

Transmission Electron Microscope (TEM) images of PQIs:

The TEM images of the PQIs are shown in Fig. S4. The PQI-1 material possesses a nanosheets structure.

Fig. S4. TEM images of the PQI-1, PQI-2 and PQI-3 materials.

Fig. S5. (a) The second CV curves (scan rate: 0.1 mV s⁻¹) and (b) the second discharge-charge curves of the DAAP, NTCDA and PQI-1 in the 1.5-3.5 V potential range.

From the electrode photographs of DAAP, NTCDA and PQI-1 after 5 discharge-charge cycles, we can clearly see the solubility of different organic electrode materials in electrolyte. The DAAP and NTCDA have an obviously serious dissolution in the electrolyte of 1 M LiTFSI in 1:1 v/v DOL:DME.

Fig. S6. Electrode photographs of DAAP, NTCDA and PQI-1 after 5 discharge-charge cycles.

Fig. S7. (a), (b) the CV curves (scan rate: 0.1 mV s⁻¹); (c), (d) the first three discharge-charge curves; and (e), (f) cycling performance of the PQI-2 and PQI-3 in the potential range of 1.5-3.5 V.

References

- 1 B. Häupler, A. Wild, U. S. Schubert, Adv. Energy Mater. 2015, 5, 1402034.
- 2 Z. Song, T. Xu, M. L. Gordin, Y.-B. Jiang, I.-T. Bae, IQ. Xiao, H. Zhan, J. Liu, d. Wang, *Nano Lett.* 2012, **12**, 2205.
- 3 H. Wu, K. Wang, Y. Meng, K. Lua, Z. Wei, J. Mater. Chem. A 2013, 1, 6366.
- 4 J. Wu, X. Rui, C. Wang, W.-B. Pei, R. Lau, Q. Yan, Q. Zhang, *Adv. Energy Mater.* 2015, 5, 1402189.