Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2016

## Supplementary Information

DOI:

## An electrode design rule for top-illuminated organic photovoltaics

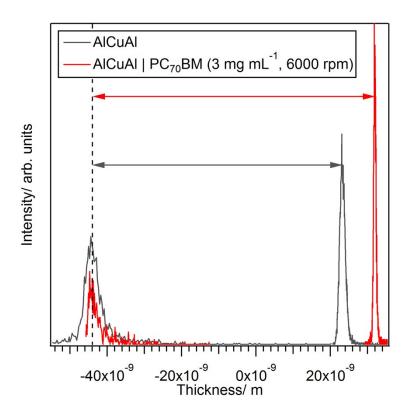
Martin S. Tyler<sup>1</sup>, Immad I. Nadeem<sup>1,2</sup> and Ross A. Hatton<sup>1</sup>

<sup>1</sup>Department of Chemistry, University of Warwick, CV4 7AL, UK.

<sup>2</sup>Current address: London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom.

E-mail: Ross.Hatton@warwick.ac.uk

## Method for calculating HOMO and LUMO levels:


To calculate the HOMO and LUMO levels from differential pulsed voltammetry the equations shown below were applied to the measured oxidation and reduction potentials to give the HOMO and LUMO respectively:

$$HOMO = -1.2 \times \left(1^{st} \ Oxidation \ E_{\frac{1}{2}Material} - E_{\frac{1}{2}Ferrocene}\right) - 4.8$$

$$LUMO = -1.2 \times \left(1^{st} Reduction E_{\frac{1}{2}Material} - E_{\frac{1}{2}Ferrocene}\right) - 4.8$$

| Material            | HOMO/ eV | LUMO/ eV |
|---------------------|----------|----------|
| PC <sub>60</sub> BM | -6.16    | -3.78    |
| PC <sub>70</sub> BM | -6.05    | -3.77    |

For both  $PC_{60}BM$  and  $PC_{70}BM$  the measured values are within the range reported in the literature using other measurement techniques.<sup>1-10</sup>



**Figure S1:** Step heights of AlCuAl and AlCuAl |  $PC_{70}BM$  films measured using atomic force microscopy, showing how the organic semiconductor film thickness was determined. In this case the  $PC_{70}BM$  solution concentration was 3 mg mL<sup>-1</sup>, the spin speed was 6000 rpm and the film thickness was determined to be ~ 9 nm.

## References

- 1. Davis et al., J. Mater. Chem., 2011, 21, 1721.
- 2. Scharber et al. Adv. Mater., 2006, 18(6), 789.
- 3. Yoo et al., Nanoscale. Res. Lett., 2011, 6, 545.
- 4. Guan et al., Org. Electron., 2010, 11(11), 1779.
- 5. Petoukhoff et al., Sol. Energ. Mat. Sol. Cells, 2014, 120, 72.
- 6. Thompson et al., Angew. Chem. Int. Ed. 2007, 47(1), 58.
- 7. Ratcliff et al., Org. Electron. 2012, 13(5), 744.
- 8. He et al., Chem. Commun., 2012, 48, 7616.
- 9. Singh et al., Adv. Func. Mater., 2012, 22(19), 4087.
- 10. Dou et al., Nature Photonics, 2012, 6, 180.