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Silk tensile testing

The cross-sectional area of each individual’s silk was measured from a looped strand deposited 
onto mica (Table S1). To encourage the silk to adhere flat to the substrate, a 20 µL water droplet 
was applied to each mica sample and spin-coated. This treatment was not found to substantially 
affect the calculated silk dimensions (Fig. S3). To find cross-sectional area, AFM contact mode 
scanning was conducted with a 0.27 N/m nominal spring constant tip (BudgetSensors) in an 
NTEGRA Scanning Probe Laboratory (NT-MDT). AFM scans were flattened and analyzed using 
Gwyddion (www.gwyddion.org).

Individual loop lengths (Li) were measured with Fiji/ImageJ (http://fiji.sc/) by inspecting a looped 
strand deposited onto mica. Loop size was quite consistent for each individual during a single 
spinning session: on average, the loop size standard deviation was 4% of the mean (Table S1). The 
total loop length for each sample was found by multiplying the number of loops for the sample by 
the mean loop length for the individual.

A power analysis was conducted to determine the sample size necessary to detect the desired effect. 
Since looped silk was compared to non-looped silk from each individual in a single spinning event, 
a paired analysis was deemed most appropriate. The following two-tailed equation was used to 
perform the power analysis:1

𝑛= 2(𝑠 ∙ (𝑍(𝛼s 2) + 𝑍(𝛽))
𝑤 )2

where n is the number of samples (rounded to the nearest integer), Z is the normal inverse 
cumulative distribution function, αs is the significance level of the test (type I error), β is the type 
II error (power = 1 – β), s is the sample standard deviation, and w is the effect that is desired to be 
detected. For all power analyses and other tests, we used αs = 0.05 and β = 0.1 (90% power). 

For the purpose of power analysis, we assumed a mean strength of 1 GPa and standard deviation 
of 0.25 GPa as estimates of Loxosceles silk properties since these values roughly match those of 
prior findings for spider silk2 and the stiffness and extensibility of Loxosceles silk has been found 
to reflect those of other silks.3 Passieux et al. observed a ≈50% decrease in a looped fiber’s strength 
relative to that of a non-looped fiber,4 so we conservatively opted to test for a 40% strength 
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decrease in Loxosceles silk; we thus let w = 0.4 GPa. The power analysis calculation yielded n = 
8. 

To test if the pairing between looped and non-looped samples was effective, looped strength was 
plotted vs. non-looped strength and the correlation coefficient was calculated to be 0.886, with a 
corresponding P-value of 0.003. This strong correlation and significant result led us to reject the 
null hypothesis that there is no relationship between non-looped and looped strength and justified 
the use of a paired analysis.1

Tests for normality using the D’Agostino-Pearson omnibus K2 normality test5 yielded a P-value 
of 0.85 for the strength data and 0.40 for the toughness data, indicating that neither data set is 
inconsistent with a Gaussian distribution. 

Paired student’s t-tests of the paired strength and toughness data were conducted using MATLAB 
(‘ttest’ function, version R2015b, MathWorks) to test the null hypotheses that there was no 
difference in strength and toughness between non-looped and looped strands. The 95% confidence 
interval (CI) was calculated using the equation:

𝑐=
𝑇(1 ‒ 𝛼s 2,𝑛 ‒ 1) ∙ 𝑠

𝑛

where c is half of the CI and T gives the Student's t-test inverse cumulative distribution function 
for the inputs of cumulative probability and degrees of freedom, respectively.1

The strength test resulted in a P-value of 0.53, leading us to fail to reject the strength null 
hypothesis at a significance level of 0.05. In addition, the entire 95% CI of the strength differences 
fell within the 25% zone of equivalence relative to non-looped strength,1 which has an upper bound 
equal to 125% of the mean non-looped strength and a lower bound equal to 75% of the mean non-
looped strength (Fig. 2b, black dotted lines). Naturally, the CI also falls within a 40% zone of 
relative equivalence—the target effect in our power analysis. 

The toughness test yielded a P-value of <0.001, leading us to reject the toughness null hypothesis 
(Fig. 2c). 

Tape tensile testing

For tensile tests of looped strapping tape, we assumed 5% standard deviation in tape toughness 
and 22% toughness increase predicted by the model for a single loop of size α = 1.5, we 
conservatively desired to detect a 10% increase in toughness. A two-sided, two-sample pooled t-
test power analysis conducted using MATLAB (‘sampsizepwr’ function, ‘t2’ test type) yielded n 
= 7. We opted for 8 samples due to the ease of testing. D’Agostino-Pearson normality tests did not 
reveal a significant deviation from normality in any of the samples: P = 0.22 for non-looped 
strength, P = 0.44 for looped strength, P = 0.52 for non-looped toughness, and P = 0.54 for looped 
toughness. F-tests for equal variance also failed to reject the null hypothesis of no significant 
difference between the variances of looped and non-looped samples, with P = 0.28 returned in a 
comparison of looped and non-looped strength data and P = 0.26 in a comparison of toughness 
(MATLAB, ‘vartest2’ function). A two-sided, two-sample Student’s t-test of the strength data 



resulted in a P-value of 0.25, leading us to fail to reject the null hypothesis of no difference between 
looped and non-looped tape strength; also, the 95% CI computed using MATLAB (‘ttest2’ 
function) fell within a 25% relative zone of equivalence (Fig. S2a). A two-sided, two-sample 
Student’s t-test of the toughness data yielded a P-value of 0.005, leading us to reject the null 
hypothesis of no difference in the toughness of looped and non-looped tape. 

For tests of folded masking tape, we again assumed 5% standard deviation in tape toughness. 
Because preliminary testing indicated a three or four-fold increase in toughness due to folding, we 
conservatively desired to detect an effect of 20% toughness increase. We conducted a two-sided, 
two-sample pooled t-test power analysis using MATLAB to yield n = 3. With only three samples, 
evaluated metrics of normality and equivalency of variance are unhelpful;1 however, the plotted 
distribution of data (Fig. 4f) does not appear to indicate a severe deviation from the assumptions 
of normality or equal variance. A two-sided, two-sample Student’s t-test conducted on folded and 
straight tape samples with a null hypothesis of no difference in strength yielded a significant result 
(P=0.043), yet the 95% CI fell within the 25% relative zone of equivalency (Fig. S2b). This result 
indicates that folding induces a significant decrease in strength, and an effect of less than 25% of 
the non-folded mean strength can be predicted in 95% of cases. Another two-sided, two-sample 
Student’s t-test with a null hypothesis of no difference in folded v. straight strand toughness yielded 
P<0.001, leading us to conclude a significant increase in toughness due to folding (Fig. 4f). 

Looped fiber modeling

To model the tensile behaviour of a looped fiber, we first considered an elastic material. The 
behaviour of the strand was iteratively described, with the total length of the strand recalculated 
after each loop opening. 

In the model, the loaded length L0 of the strand is first strained up to the loop breaking stress σℓ, 
resulting in an initial strain ε0 = σℓ / E, where E is the elastic modulus of the material. At ε0, a loop 
is released, immediately adding length αL0 to the strained fiber. The change in strain due to the ith 
loop opening, Δεi, is equal to Δεi = α – Δεrecov

i, where α reflects the slack added by a loop opening 
and Δεrecov

i = (σℓ / E)*(1 + α(i – 1)) is the elastic strain recovery. The (1 + α(i – 1)) term reflects 
the strained length L0(1 + α(i – 1)) that relaxes when the ith loop opens. Δεi can be positive or 
negative. If positive, the length added from a loop opening is greater than the elastic strain 
recovery, and the stress drops to 0 (Fig. 3a,d). If Δεi is negative, the loop length is less than the 
strand’s elastic recovery, and the stress does not reach 0 (Fig. 3b,e). After the ith loop opens, the 
new strand length equals the sum of L0 and iα. Once all N loops have opened, the fiber is strained 
until failure at σu.

To gauge the toughness gain due to looping, it was also necessary to model the expected stress-
strain curve of a non-looped strand whose length is equivalent to the total length of the looped 
strand, L0(1 + Nα). In this curve, the initial slack length of L0Nα is first exhausted. Then, additional 
strain Δεn = (σu / E) * (1 + Nα) is required to reach σu (Fig. 3, red curves).

In our model of a plastic looped fiber, we considered a strain-hardening plastic material since silk 
and many other materials are strain-hardening.6,7 To simplify the strain-hardening plastic model, 
the plastic region of the stress-strain curve was approximated to have some constant linear slope 
less than E (Fig. 3d). Upon loop opening, only the elastic behaviour of the curve contributes to 



Δεrecov
i. To model the stress response in the plastic region after one or more loops have opened, the 

strand must be considered a heterogeneous system: a portion of the strand has been plastically 
deformed and work-hardened, i.e. it has a stiffness of E, while the newly opened loop length 
behaves plastically. These two heterogeneous components were modelled as springs in series 

according to , where kw is the spring constant of the work-hardened strand section 
𝑘 𝑖

eff =
𝑘w𝑘𝑙
𝑘w + 𝑘𝑙

containing i – 1 loops, kℓ is the spring constant of the ith looped section, and  is the effective 𝑘 𝑖
eff

spring constant of the aggregate strand.



Supplementary Tables

Indiv Sex Age 
(yrs)

A 
(µm2) ℓ or n Li (µm) nℓ ns  �̅�u

(GPa)  (J/g)�̅� ̅𝜀max

A m 2 0.405 n
ℓ

-
893±16

-
4

3
2

0.72
0.63

91
24

0.32
–0.46

B f 2 0.639 n
ℓ

-
765±41

-
2

3
3

0.70
0.67

82
52

0.29
–0.10

C f 2 0.620 n
ℓ

-
973±21

-
5

3
4

0.70
0.79

90
47

0.31
–0.28

D f 2 0.297 n
ℓ

-
861±21

-
5

3
3

0.67
0.55

76
38

0.30
–0.15

E f 2 0.596 n
ℓ

-
904±9

-
3

3
3

0.52
0.49

69
24

0.33
–0.37

F m 2 0.525 n
ℓ

-
729±71

-
3

3
4

0.43
0.62

55
32

0.31
–0.47

G m 2 0.455 n
ℓ

-
782±64

-
2

2
4

0.43
0.54

58
36

0.32
–0.17

H f 2 0.554 n
ℓ

-
902±31

-
3

3
3

0.57
0.57

71
28

0.31
–0.43

Table S1. Silk tensile test data for all eight individuals tested, where m indicates a male individual, 
f indicates a female individual, A is the cross-sectional area, ℓ indicates a looped sample, n indicates 
a non-looped sample, Li is the average (and standard deviation) single loop length, nℓ is the number 
of loops measured to determine Li, ns is the number of silk tensile samples for the given individual 
and silk type,  is the mean ultimate strength,  is the mean effective toughness, and  is the �̅�u �̅� ̅𝜀max

mean maximum true extensibility. Since  and  are calculated from the total length of the fiber �̅� ̅𝜀max

(initially loaded length plus total loop length), a negative  indicates that the looped strand ̅𝜀max

fractured before an extension equaling the total length of the strand was reached.



ID w (mm) ℓ or n α σu (MPa) W (J/g)

A 12.2 n - 354 3.10

B 12.5 n - 390 3.80

C 13.0 n - 409 4.27

D 12.3 n - 359 3.45

E 10.1 n - 344 2.87

F 14.6 n - 404 4.01

G 14.3 n - 411 4.18

H 9.8 n - 415 4.01

I 14.9 ℓ 1.52 408 5.40

J 9.7 ℓ 1.46 340 3.93

K 12.7 ℓ 1.56 346 4.76

L 11.0 ℓ 1.43 374 4.90

M 13.7 ℓ 1.90 304 3.73

N 10.6 ℓ 1.75 314 4.32

O 13.3 ℓ 1.35 422 5.75

P 10.3 ℓ 1.39 400 5.90
Table S2. Strapping tape tensile test data, where w is the tape width, ℓ indicates a looped sample, 
n indicates a non-looped sample, α is the normalized loop size, σu is the ultimate strength, and W 
is the toughness.



ID f or n α σu (MPa) W (J/g)

A n - 39 0.68

B n - 40 0.77

C n - 42 0.84

D f 0.49 33 2.57

E f 0.50 38 2.38

F f 0.50 36 3.08
Table S3. Label tape tensile test data, where f indicates a folded sample, n indicates a non-looped 
sample, α is the normalized loop size, σu is the ultimate strength, and W is the toughness.



Supplementary Figures

Fig. S1. Estimated relative enhancement due to looping in Loxosceles silk. (a) Representative 
looped stress-strain curve from Fig. 2a. The dark blue areas are only present due to “strain cycling” 
after loop opening events. The light blue areas represent regions of the curve where the strand first 
encountered a given stress, which would also be present in a non-looped system. (b) Estimated 
relative enhancement φ* = (Wℓ − Wℓ*)/Wℓ* of the looped toughness due to strain cycling in each 
test (n=26, circles) and the average (horizontal bar), where Wℓ* is the toughness of the unravelled 
portion of the strand (light blue areas, a) and Wℓ is the toughness of the entire looped strand (all 
blue areas, a).



Fig. S2. Ultimate strength of (a) looped strapping tape and (b) folded label tape. Left frames (white 
background) give the strength of each sample (circles) and mean (horizontal bars), and right frames 
(grey background) show the mean difference between hidden length and non-hidden length 
samples (horizontal bar), 95% CI (vertical bar), zero difference (red dotted line), 10% relative zone 
of equivalence (green dotted lines), and 25% zone of equivalence (black dotted lines). In (a), the 
95% CI intersects the zero difference line, indicating a non-significant result (two-tailed two-
sample t-test, P=0.25, n=8), while the 95% CI below the zero line in (b) reflects a significant 
decrease in strength (two-tailed two-sample t-test, P=0.043, n=3). The length of the 95% CIs, as 
well as the 10% and 25% zones of equivalence, give a sense of the relative scale of the effect of 
introducing hidden length: all hidden length groups can be considered equivalent to the control at 
a level of 25% relative equivalency (since the 95% CIs lie completely within that zone), while at 
10% relative equivalency, the looped tape data (a) is ambiguous and the folded tape (b) would be 
considered not equivalent.



Fig. S3. Comparison of Loxosceles silk deposited on a Si substrate before and after wetting, with 
wetting accomplished by deposition of a water droplet and spin-coating to dry. (a,b) Optical 
microscopy images of dry and wetted silk, respectively, with approximate scanned areas indicated 
by red boxes. (c,d) AFM scans of the same section of silk before and after wetting, with sampled 
cross-sectional profiles indicated by blue lines. (e) Comparison of cross-sectional profiles of the 
silk strand before and after wetting, with dashed lines indicating the median height of each silk 
surface. Calculated cross-sectional areas: 0.407 µm2 dry, 0.372 µm2 wet.



Supplementary Videos

Video S1. Loxosceles spinning behavior and resulting silk structure observed while roaming 
unrestrained. Filmed at 60 fps, shown at 30 fps (0.5x speed).

Video S2. Angled view of Loxosceles spinneret behavior. Filmed at 1000 fps, shown at 25 fps 
(1/40th speed).

Video S3. Angled view of Loxosceles spinneret behavior, with only the right anterior lateral 
spinneret and associated posterior spinnerets active. Filmed at 1000 fps, shown at 25 fps (1/40th 
speed).
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