Self-Branched α -MnO₂/ δ -MnO₂ Heterojunction Nanowires

With Enhanced Pseudocapacitance

Changrong Zhu,^{*a,b*} Lu Yang,^{*a*} Joon Kyo Seo,^{*a*} Xiao Zhang,^{*c*} Shen Wang,^{*a*} JaeWook Shin,^{*a*} Dongliang Chao,^{*b*} Hua Zhang,^{*c*} Ying Shirley Meng,^{*a*} Hong Jin Fan^{*b*}*

^a Department of NanoEngineering, University of California San Diego, La Jolla, California 92093-0448, USA

^b School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

^c Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore

Figure S1. S1 AFM characterization of α -MnO₂ nanowires. a) Line profile and b) the height distribution of a single α -MnO₂ nanowire.

Sample	V 1	V ₂	V3	V 4	V 5	V 6	V 7
α-MnO ₂ Nanowire	640	579	516	390	332	183	-
δ-MnO ₂	647	577	492	403	290	-	143
Self-branched MnO ₂	648	579	500	397	283	185	136

Table S1. Raman peak positions of pure α -, δ -, and Self-branched MnO₂

Raman fitting results analysis:

V₁: located at $640 \sim 650$ cm⁻¹, can be assigned to the symmetric stretching vibration of [Mn-O] of MnO₆ octahedral;^{1, 2}

V₂: located at $570 \sim 580 \text{ cm}^{-1}$, is attributed to [Mn-O] stretching along the chains of the MnO₂ framework.^{1,2}

V₃: located at 490 ~ 500 cm⁻¹, is due to the deformation mode of the metal–oxygen chain Mn–O–Mn in the [MnO₆] octahedral lattice.^{3, 4}

V₄: located at 390 \sim 410 cm $^{-1},$ corresponds to the stretching mode of the [MnO₆] octahedra.⁴

V₅: located at 280 \sim 330 cm⁻¹, corresponds to infrared-active modes.⁵

V₆: located at 183 cm⁻¹, is assigned to the external vibration of translational motion of MnO_6 octahedral related to the tunnel cation.^{2, 6}

 V_7 : located at 130-150 cm⁻¹, is assigned to the external vibration of translational motion of MnO₆ octahedral related to the water molecules in the MnO₂ layers.²⁻⁴

 $V_3 \sim V_5$: 280 ~ 500 cm⁻¹, those infrared-active modes could also be caused by the formation of the electrochemically irreversible low valence manganese oxides such as Mn_2O_3 and Mn_3O_4 , and the dissolution of Mn species from the electrode or octahedra polymerization.⁵

Figure S2. BET test of MnO_2 samples. Pore size distribution of a) α -MnO₂ nanowire and b) self-branched-MnO₂ nanostructure; N₂ Adsorption-desorption isotherms of c) α -MnO₂ nanowire and d) self-branched-MnO₂ nanostructure.

Figure S3. CV curves a) and charge-discharge curves b) of α -MnO₂ nanowire at different scan speed and current density.

Figure S4. a) CV curves of δ -MnO₂ nanoflakes on carbon paper at different scan speeds; b) Comparison of the specific capacitance of the self-branch electrode, α -MnO₂ nanowire electrode, and δ -MnO₂ nanoflake electrode. (c and d) SEM images of different magnifications of the δ -MnO₂ nanoflakes on carbon fibers.

Figure S5. Coulombic efficiency at different current densities of α -MnO₂ nanowire (NWM) and self-branched-MnO₂ nanostructure (SBM) electrodes, as calculated from their galvanostatic charge/discharge curves using the equation $E = \frac{Q_{Discharge}}{Q_{charge}}$.

Calculation of capacitance contribution

According to Dunn et. al.⁷, we explain the calculation details of capacitance contribution differentiation based on the CV curves as follows.

First, the current against scan speed be expressed in the equation:

$$i = av^{b} \tag{1}$$

where *i* is the measured current under certain voltage, *v* is the sweep rate, *a* and *b* are adjustable parameters. When *b* equals 1, the current is fully contributed by capacitive behavior; When *b* equals 0.5, the current is fully ion-diffusion controlled contribution. The *b* value can be obtained by plotting current and sweep rate in logarithm, namely, the gradient of linear plots.

$$\log i = b \log v + \log a \tag{2}$$

In reality, the current can originate from both aforementioned contributions. Therefore, the *b* value can vary between 0.5 and 1. Taking that into consideration, we can rewrite Equation (1) so that the current is a sum of two parts: capacitive current (viz., b=1) and ion-diffusion controlled one (viz., b=0.5):

$$i(V) = k_1 v + k_2 v^{1/2}$$
(3)

We are interested in the percentage of the capacitive current. So, in order to determine the k_1 value, equation (3) can be reformulated as:

$$i(V) / v^{1/2} = k_1 v^{1/2} + k_2 \tag{4}$$

Obviously, with a series test of CV curves under different scan speed, the k_1 value can be determined from the linear plots of $i(V)/v^{1/2}$ vs $v^{1/2}$.

In order to obtain the charge per area (which is also a combination of two parts), one can do the following integration.

$$Q = \frac{\int I \bullet dU}{vS} \tag{5}$$

For example, the capacitance contribution from capacitive behavior is:

$$Q_s = \frac{\int k_1 v dU}{vS} = \frac{k_1}{S} \int dU \tag{6}$$

Figure S6. Capacitive contribution calculations of a) α -MnO₂ nanowire and b) self-branched-MnO₂ nanostructure at 5 mV s⁻¹. This figure provides just one example of the current contribution by the capacitive process at this particular sweep rate of 5 mV s⁻¹; For other sweep rates, the pattern differs.

Table S2.	Comparison	of specific	capacitance	and area	l capacitance at	different	scan
speeds.							

Electrode (mass loading in mg/cm ²)	Areal capacitance (mF/cm ²) @ different scan speed (mV/s)				Gravimetric capacitance (F/g) @ different scan speed (mV/s)			
	1	5	10	20	1	5	10	20
MnO ₂ -film (0.025) ^[Brett et al.]	10	-	7.8	6.8	400	-	270	210
Graphene-MnO ₂ (3.31) ^[Xie et al.]	513	430	391	265	155	130	118	80
Graphene-MnO ₂ (1.71) ^[Xie et al.]	325	277	222	197	190	162	130	115
CNT-MnO_2 (1.3) ^[Cui et al.]	-	189	137	104	-	145	105	80
$\text{CNT-MnO}_2(2.1)$ [Cui et al.]	-	231	189	137	-	110	90	65
$\text{CNT-MnO}_2(3.1)$ [Cui et al.]	-	419	388	233	-	135	125	75
α -MnO ₂ (0.5) ^[Lu et al.]	-	110	107	98	-	220	213	196
Our work (3.37)	783	602	511	392	233	179	152	116

Reference

1. Chen, D.; Ding, D.; Li, X.; Waller, G. H.; Xiong, X.; El-Sayed, M. A.; Liu, M. *Chemistry of Materials* **2015**, 27, (19), 6608-6619.

2. Cheng, S.; Yang, L.; Chen, D.; Ji, X.; Jiang, Z.-j.; Ding, D.; Liu, M. *Nano Energy* **2014**, 9, 161-167.

3. Ede, S. R.; Anantharaj, S.; Nithiyanantham, U.; Kundu, S. *Physical Chemistry Chemical Physics* **2015**, 17, (7), 5474-5484.

4. Julien, C.; Massot, M. *Physical Chemistry Chemical Physics* **2002**, 4, (17), 4226-4235.

5. Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. *Solid State Ionics* **2003**, 159, (3), 345-356.

6. Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P. *The Journal of Physical Chemistry C* **2008**, 112, (34), 13134-13140.

7. Wang, X.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X.; Wang, G.; Dunn, B.; Lu, Y. *Advanced Energy Materials* **2011**, 1, (6), 1089-1093.