Supplementary information

A Flexible p-CuO/n-MoS₂Heterojunction Photodetector with Enhanced Photoresponse by Piezo-phototronicEffect

Ke Zhang^{1†}, Mingzeng Peng^{1†}, Wei Wu¹, Junmeng Guo¹, Guoyun Gao¹, YudongLiu¹, Jinzong Kou¹, Rongmei Wen¹, Ying Lei¹, Aifang Yu¹, Yang Zhang¹, Junyi Zhai^{1*} and ZhongLin Wang^{1,2*}

1 Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science; National Center for Nanoscience and Technology (NCNST), Beijing 100083, P.R. China

2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States

*Corresponding Author. E-mail: jyzhai@binn.cas.cn and zlwang@gatech.edu.

⁺ These authors contributed equally to this work.

Contents:

1. The diagram of tensile strain loading apparatus.

The photoresponse measurement of p-CuO/n-MoS₂ heterojunction photodetector mainly used Raman confocal microscopy and high precision manual translation table, as shown in **Figure S1**. We firstly defined the position of heterojunction photodetector on PET substrate by CCD imaging system under 50×objective lens. Next, the tensile strain was applied by bendingPET substrate using high precision manual translation table and photoresponse characteristic was measured under different strain and laser power conditions.

2. The photoresponse of p type CuO film and monolayer MoS₂.

The I-V characteristics of p-CuO film along with the increase of tensile strain in dark environment and the charges of current under different optical power intensities are shown in **Figure S1a** and **S2b**. The results indicate the photoresponse of pure p type CuO film is quite small and it has almost no effect on the performance of whole p-n heterojunction photodetector. Monolayer MoS_2 photodetector with Cr/Au ohmic contact just performs the piezoresistive effect with increasing tensile strain, as shown in **Figure S2c**. The photosensitivity ($\Delta I/I_{dark}$) with changes of tensile strain has an equivalent effect on the device performance under both dark and illumination conditions (**Figure S2d**).

3. The operational stability of the photodector.

The time-dependent photoresponse of p-CuO/n-MoS₂ heterojunction photodetector to periodical on/off illumination under different tensile strain is shown in **Figure S3**. The device shows a good stability in a long time on/off

illumination cycles.

4. The relationship between photoresponsivity and light powers under different external tensile strain.

The photoresponsivity(R) of p-CuO/n-MoS₂ heterojunction photodetector is calculated with the formula $R=(I_{ph}-I_{dark})/P$, where I_{ph} is photocurrent, I_{dark} is dark current and P is the light power density. The result in **Figure S4** shows the photoresponsivity reach to the maximum value 11.4 mA/W under the highest strain 0.65 % and low illumination 2.66 mW/cm².

Figures in supplementary information

Figure S1

Figure S1. The diagram of tensile strain loading apparatus.

Figure S2

Figure S2.The photoresponse of photodetectors made of pure p-CuO film and monolayer n-MoS₂ upon tensile strain. (a) I-V chatacteristics of p-CuO film with the increase of tensile strain. (b) The changes of current of p-CuO film with increasing tensile strain under different optical power intensity at a bias of 10 V. (c) I-V chatacteristics of monolayer MoS₂ with the increase of tensile strain. (d) The changes of photosensitivity ($\Delta I/I_{dark}$) of monolayer MoS₂ with increasing tensile strain under different optical power MoS₂ with increasing tensile strain under different optical power MoS₂ with increasing tensile strain under different optical power MoS₂ with increasing tensile strain under different optical power intensity at a bias of 10 V.

Figure S3. The time-dependent photoresponse of $p-CuO/n-MoS_2$ heterojunction photodetector to periodical on/off illumination under different tensile strains at bias of 10 V.

Figure S4. The photoresponsivity of $p-CuO/n-MoS_2$ heterojunction photodetector under different tensile strains.