Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Wofford *et al.* "Ferric ions accumulate in the walls of dormant *Saccharomyces cerevisiae* cells and are reductively mobilized during reactivation"

Contents:

Table S1	Media composition
Table S2	Final OD_{600} and final Fe concentration of cells harvested during media switch
experiments	
Appendix A	RMSD considerations
Appendix B	Propagation of iron concentrations with divisions
Table S3	Mössbauer Spectral Decompositions
Figure S1	UV-Vis spectra of Fe ^{II} (BPS) ₃ solution and whole yeast cells
Figure S2	Changes in percentages of Fe species found in Mössbauer spectra of $^{57}\mathrm{Fe}_{40}\mathrm{B}_0$ cells
transferred to	Fe_0B_{100} medium

Abbreviations	Compositions
${}^{57}\text{Fe}_{40}\text{B}_{0}$	Synthetic minimal medium supplemented with ⁵⁷ Fe. <i>See</i> Ref (25).
$^{57}\mathrm{Fe_1B_{21}}$	MM (w/o Fe) + 1 μ M ⁵⁷ Fe + 21 μ M BPS (bathophenanthroline disulfonate)
Fe ₀ B ₃₀	MM (w/o Fe) + 30 μ M BPS
Fe_0B_{100}	MM (w/o Fe) + 100 μ M BPS
Fe ₀ B ₁₀₀ -NAB	MM (w/o Fe, w/o amino acids and bases) + 100 μ M BPS
$^{56}\text{Fe}_{40}\text{B}_{0}$	MM (w/o Fe) + 40 μ M ⁵⁶ Fe
Fe ₀ B ₀	MM (w/o Fe)
DW	Sterile deionized water

Table S1. Media composition.

Corresponding figures	Growth conditions	Final OD ₆₀₀	Final [Fe] _{cell} (μM)
Figure 8A (before media switch)	Grown on 57 Fe ₄₀ B ₀ for 5 days	-	4100 ± 400
Figure 8A (before media switch)	Grown on 57 Fe ₁ B ₂₁ for 15 hours	-	130 ± 20
Figure 8A, filled circles	Grown on ${}^{57}\text{Fe}_{40}\text{B}_0$ for 5 days, switched to Fe_0B_{30} at $\text{OD}_{\text{Initial}} = 0.01$, grown for 4 days	1.6 ± 0.3	57 ± 7
Figure 8A, blank circles	Grown on ${}^{57}\text{Fe}_1\text{B}_{21}$ for 15 hours, switched to Fe_0B_{30} at $\text{OD}_{\text{Initial}} = 0.01$, grown for 4 days	0.76 ± 0.39	23 ± 2
Figure 8A, filled triangles	Grown on ${}^{57}\text{Fe}_{40}\text{B}_0$ for 5 days, switched to $\text{Fe}_0\text{B}_{100}$ at $\text{OD}_{\text{Initial}} = 0.01$, grown for 5 days	0.79 ± 0.15	110 ± 10
Figure 8A, blank triangles	Grown on ${}^{57}Fe_1B_{21}$ for 5 days, switched to Fe_0B_{100} at $OD_{Initial} = 0.01$, grown for 5 days	0.05 ± 0.02	-
Figure 8B (before media switch)	Grown on 57 Fe ₄₀ B ₀ for 5 days	1.7 ± 0.1	4900 ± 1500
Figure 8B, filled squares	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to ${}^{57}Fe_{40}B_0$ at a conserved OD, grown for 1 day	3.6±0.5	3900 ± 900
Figure 8B, blank squares	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to Fe_0B_{100} at a conserved OD, grown for 1 day	3.5 ± 0.2	1300 ± 400
Figure 8B, crosses	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to Fe_0B_{100} -NAB at a conserved OD, grown for 1 day	1.9 ± 0.1	2900 ± 900
Figure 8C (before media switch)	Grown on 57 Fe ₄₀ B ₀ for 5 days	2.2 ± 0.1	3900 ± 700 [⁵⁷ Fe] = 3800 ± 700

Table S2. Final OD_{600} and final Fe concentration of cells harvested during media switch experiments.

Figure 8C, filled squares	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to ${}^{56}Fe_{40}B_0$ at a conserved OD, grown for 1 day	4.2 ± 0.1	3100 ± 200 [⁵⁷ Fe] = 860 ± 120
Figure 8C, blank squares	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to Fe_0B_{100} at a conserved OD, grown for 1 day	4.2 ± 0.1	1500 ± 200
Figure 8C, filled diamonds	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to 0Fe at a conserved OD, grown for 1 day	4.2 ± 0.1	1200 ± 200
Figure 8C, blank diamonds	Grown on ${}^{57}\text{Fe}_{40}\text{B}_0$ for 5 days, switched to DW at a conserved OD, grown for 1 day	2.2 ± 0.2	2100 ± 500
Figure 9A	Grown on ${}^{57}\text{Fe}_{40}\text{B}_0$ for 5 days	1.7	3400
Figure 9B	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to Fe_0B_{100} at a conserved OD, grown for 1 day	4.1	900
Figure 9D	Grown on ${}^{57}Fe_{40}B_0$ for 5 days, switched to Fe_0B_{100} at a conserved OD, grown for 1 day	1.9	2000

Appendix A. RMSD considerations

In some experiments, data are not collected at equal time intervals (e.g. see $[O_2]$ trace in Figure 3). This situation distorts the process of model optimization because weighting each point equally favors better fits to the crowded regions of data at the expense of the fits to the sparse regions. But sparse regions may contain critical behavior that researchers might want to model. We wanted our simulated plots to weigh all time-intervals of such traces equally despite the unequal distribution of data. This required that we weigh sparse data more heavily than dense data. We used the following approach to do this.

Consider a 2D plot in which *n* points are *unevenly* spaced in time, with the first point at $t_1 = 0$ and the last point t_n at the end of the experiment. Let intermediate points $IP_{i,i+1}$ be equidistant between points t_i and t_{i+1} such that $IP_{i,i+1} = (t_i + t_{i+1})/2$. Intermediate line segments $LS_i = IP_{i,i+1} - IP_{i-1,i} = (t_{i+1} - t_{i-1})/2$. The line segments for the initial and final points, LS_1 and LS_n equal $t_2/2$ and $(t_n - t_{n-1})/2$, respectively. Then $t_n = \sum_{i=1}^n LS_i$. For each data point, the normalized weighting factors $wf_i = LS_i/t_n$.

The RMSD function used to optimize the fits of simulations to experimental traces was constructed by adding the contributions of the two traces generated in the experiment (OD and O_2). In the OD trace, 18 data points were collected whereas 30 data points were collected in the O_2 trace. Weighting each trace equally required multiplying the RMSD contributions due to the OD trace by a factor of 30/18. The final RMSD used to optimize the model was

$$RMSD = \frac{1}{60} \begin{bmatrix} \frac{30}{18} \left(\frac{t_{OD,2}}{2t_{OD,18}}\right) \frac{\left| [S]_{OD,1} - [D]_{OD,1} \right|}{[D]_{OD,1}} + \sum_{i=2}^{18} \frac{30}{18} \left(\frac{t_{OD,i+1} - t_{OD,i-1}}{2t_{OD,18}}\right) \frac{\left| [S]_{OD,i} - [D]_{OD,i} \right|}{[D]_{OD,i}} + \frac{30}{18} \left(\frac{t_{OD,18} - t_{OD,17}}{2t_{OD,18}}\right) \frac{\left| [S]_{OD,18} - [D]_{OD,18} \right|}{[D]_{OD,18}} \\ + \left(\frac{t_{O2,2}}{2t_{O2,18}}\right) \frac{\left| [S]_{O2,1} - [D]_{O2,1} \right|}{[D]_{O2,1}} + \sum_{j=2}^{30} \left(\frac{t_{O2,j+1} - t_{O2,j-1}}{2t_{O2,30}}\right) \frac{\left| [S]_{O2,j} - [D]_{O2,j} \right|}{[D]_{O2,j}} + \left(\frac{t_{O2,30} - t_{O2,29}}{2t_{O2,30}}\right) \frac{\left| [S]_{O2,30} - [D]_{O2,30} \right|}{[D]_{O2,30}} \end{bmatrix}$$

Appendix B: Propagation of iron concentrations with divisions

The iron concentration for the first generation of cells and the isotopic ratio were measured. These give the relationships

$$[Fe_{cell}]_{1} = [{}^{57}Fe]_{1} + [{}^{56}Fe]_{1} = 130$$

also
$$[{}^{56}Fe]_{1} / [{}^{57}Fe]_{1} = 1.1$$

solving...
$$[{}^{56}Fe]_{1} = 68.1$$

$$[{}^{57}Fe]_{1} = 61.9$$

Assume that X μ M ⁵⁶Fe and Y μ M ⁵⁷Fe from the environment enter the cells in association with each growth and division cycle. The ⁵⁶Fe is presumed to arise from endogenous Fe in the medium whereas ⁵⁷Fe is presumed to arise from Fe exported from the cell. For the second generation

$$[Fe_{cell}]_2 = [{}^{56}Fe]_2 + [{}^{57}Fe]_2 = \frac{[{}^{56}Fe]_1 + X}{2} + \frac{[{}^{57}Fe]_1 + Y}{2}$$

also

$$\frac{\begin{bmatrix} {}^{56}Fe]_2 \\ [{}^{57}Fe]_2 \end{bmatrix}}{\begin{bmatrix} {}^{57}Fe]_2 \end{bmatrix}} = \frac{\frac{\begin{bmatrix} {}^{50}Fe]_1 + X}{2}}{\frac{\begin{bmatrix} {}^{57}Fe]_1 + Y}{2}}$$

For the third generation

- -

$$[{}^{56}Fe]_{2} = \frac{\frac{[{}^{56}Fe]_{1} + X}{2} + X}{2} = \frac{[{}^{56}Fe]_{1}}{4} + \frac{X}{4} + \frac{X}{2}$$
$$[{}^{57}Fe]_{2} = \frac{\frac{[{}^{56}Fe]_{1} + Y}{2} + Y}{2} = \frac{[{}^{56}Fe]_{1}}{4} + \frac{Y}{4} + \frac{Y}{2}$$

For the seventh generation...

$$\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{2} = \frac{\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{1}}{64} + \frac{X}{64} + \frac{X}{32} + \frac{X}{16} + \frac{X}{8} + \frac{X}{4} + \frac{X}{2} = \frac{\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{1}}{64} + \frac{63X}{64}$$
$$\begin{bmatrix} {}^{57}Fe \end{bmatrix}_{2} = \frac{\begin{bmatrix} {}^{57}Fe \end{bmatrix}_{1}}{64} + \frac{63X}{64}$$
$$\begin{bmatrix} Fe_{cell} \end{bmatrix}_{7} = \frac{\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{1}}{64} + \frac{63X}{64} + \frac{\begin{bmatrix} {}^{57}Fe \end{bmatrix}_{1}}{64} + \frac{63Y}{64} = 23$$
also
$$\frac{\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{7}}{\begin{bmatrix} {}^{57}Fe \end{bmatrix}_{7}} = \frac{\begin{bmatrix} {}^{56}Fe \end{bmatrix}_{1}}{64} + \frac{63X}{64} = 4.4$$

Solving gives

$$[{}^{56}Fe]_7 = 18$$

 $[{}^{57}Fe]_7 = 3.3$

Table S3. Mössbauer Spectral Decompositions. Parameters are the average obtained from the considered spectra; particular parameters are listed separately if they were significantly different. *Percentages of signals with broad range of A values (Fe aggregates) were estimated based on the intensity remaining after subtracting all assignable signals from original spectra. Bold-styled parameters were fixed when simulated. Symbols /1D or /5D indicates growth for 1 or 5 days, respectively. Arrows indicate transfer from one medium to another.

Spectrum	NHHS	NHHS Fe ^{II}	HS heme	Central	Fe ^{III} nano-	Fe ^{II} (BPS) ₃
(Total	Fe ^{III}		Fe ^{II}	Doublet	particle (and	
[Fe])			(and	(LS heme	broad	
			$[Fe_2S_2]^{2+}$)	Fe ^{II} and	feature*)	
				$[Fe_4S_4]^{2+})$		
$A_{iso}/g_n\beta_n$	-227 to					
(kG)	-235	-	-	-	-	-
δ	05 06	1 24 + 0.05	0.85 ±	0.45	0.52 ± 0.01	0.29 ± 0.01
(mm/s)	0.5 - 0.0	1.34 ± 0.03	0.03	0.45	0.55 ± 0.01	0.38 ± 0.01
ΔE_Q	1 to 0	2.06 ± 0.05	2.38 ±	1 15	0.52 ± 0.04	0.21 ± 0.01
(mm/s)	-1 10 0	3.00 ± 0.03	0.07	1.15	0.52 ± 0.04	0.31 ± 0.01
Γ	0.80 -	0.65 + 0.07	0.39 ±	0.00	0.45 ± 0.10	0.22 ± 0.02
(mm/s)	0.85	0.03 ± 0.07	0.10	0.00	0.43 ± 0.10	0.32 ± 0.02
Fig. 9A						
⁵⁷ Fe ₄₀ B ₀ /5D	65%	30/2			10%	
(3400	0570	570	-	-	(20%)	-
μ M)						
Fig. 9B						
⁵⁷ Fe ₄₀ B ₀ /5D						
$ \rightarrow$	27%	10%	-	-	-	60%
$Fe_0B_{100}/1$						
D						

(900 µM)						
Fig. 9C						
2B-						
minus-	68%	26%	3%	3%	-	-
FeBPS ₃						
(360 µM)						
Fig. 9D						
⁵⁷ Fe ₄₀ B ₀ /		100/				
$5D \rightarrow$		10%				
Fe ₀ B ₁₀₀ -	24%	(1.3/3.0)	-	-	-	48%
NAB/1D		10%				
(2000		(1.1/3.8)				
μ M)						
Fig. 9E						
2D-		20%				
minus-	400/	(1.3/3.0)				
FeBPS ₃	48%	30%	-	-	-	-
(1000		(1.1/3.8)				
μ M)						
Fig. 11A						
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$	58%	30/2	_		20%	
(5200	5670	570	-	-	(17%)	-
μM)						
Fig. 11B						
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$						
\rightarrow	79%	8%	3%	7%	3%	_
$Fe_0B_0/1D$						
(1600						
μΜ)						
Fig. 11C	63%	_	_		28%	_
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$					(6%)	

\rightarrow						
DW/1D						
(3000						
μ M)						
Fig. 11D						
${}^{57}\mathrm{Fe_{40}B_0}/5\mathrm{D}$						
\rightarrow	_	_	_	_	_	> 90%
$Fe_0B_{100}/1D$						2 9070
(1700						
μM)						
Fig. 11E						
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$						
\rightarrow						
$Fe_0B_{100}/1D$	32%	20%	6%	27%	-	15%
/ Tris-						
washed						
(160 µM)						
Fig. 11F						
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$						
\rightarrow						
⁵⁶ Fe ₄₀ B ₀ /1D	46%	12%	3%	3%	36%	_
(2900	1070	12/0	570	570	5070	
μΜ,						
$[^{57}Fe] =$						
710 µM)						
Fig. 12A						
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$	48%	2%	_	_	20%	_
(4500		_/0			(27%)	
μ M)						
Fig. 12B					23%	
${}^{57}\text{Fe}_{40}\text{B}_0/5\text{D}$	43%	6%	-	-	(25%)	-
\rightarrow					()	

$Fe_0B_{100}/0.5$						
hr						
(3600						
μ M)						
Fig. 12C						
$^{57}Fe_{40}B_0/5D$						
\rightarrow					200/	
$Fe_0B_{100}/3$	45%	4%	-	-	20%	22%
hr					(7%)	
(3100						
μ M)						
Fig. 12D						
$^{57}Fe_{40}B_0/5D$						
\rightarrow					60/	
$Fe_0B_{100}/6$	38%	2%	-	-	6% (40()	48%
hr					(4%)	
(2700						
μM)						

Figure S1. UV-Vis spectra of Fe^{II}(BPS)₃ solution and whole yeast cells. A, 50 μ M Fe-citrate and 150 μ M BPS mixed in 100 mM Tris-HCl buffer (pH 9.4); B, 1 day-old cells grown on Fe₄₀B₀ medium were transferred to Fe₀B₁₀₀ medium (10-fold diluted in water); C, same as B, but rinsed with 100 mM Tris-HCl buffer (pH 9.4); D, rinses collected from C.

Figure S2. Changes in percentages of Fe species found in Mössbauer spectra of ${}^{57}Fe_{40}B_0$ cells transferred to Fe_0B_{100} medium and harvested at 0.5, 3, 6 and 24 hr after the transfer. Open squares, NHHS Fe^{III}; solid squares, Fe^{III} nanoparticles; pink circles, Fe^{II}(BPS)₃ complexes; blue circles, NHHS Fe^{II}. Spectral intensities at 24 hours after the medium transfer step were assumed to equal those of Figure 9D. Percentages at 0.5, 3, and 6 hr were obtained from Figure 12 B, C, and D. Percentages at 24 hr were obtained from Figure 11D.

