Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information

Thioester-appended organosilatranes: Synthetic investigations and application in the modification of magnetic silica surface

Gurjaspreet Singh*^{,a}, Sunita Rani^a, Aanchal Arora^a, Darpandeep Aulakh^b, Mario Wriedt^{*,b}

^aDepartment of Chemistry, Panjab University, India

^bFunctional Materials Design & X-ray Diffraction Lab, Department of Chemistry &

Biomolecular Science, Clarkson University, Box 5810, Potsdam, NY 13699, USA.

E-mail: gjpsingh@pu.ac; mwriedt@clarkson.edu

Entry	Page No.
ORTEP diagrams of 3c and 3f	2
Digital photographs of aqueous dispersions of hybrid nanoparticles	3
Chemosensing activity of Fe ₃ O ₄ @SiO ₂ @silatrane towards different cations	4
IR spectra, B-H and Job's plot and reaction time profile	5-9
(¹ H, ¹³ C) NMR and Mass spectra of all compounds	10-42
Selective crystal data	43-44
Amount of thionyl chloride used	45

Table of contents

Fig. S1 ORTEP showing the crystal structure of 3c with displacement ellipsoids drawn at the 20% probability level, selected atoms are labeled.

Fig. S2 ORTEP showing the crystal structure of 3f with displacement ellipsoids drawn at the 30% probability level, selected atoms are labeled.

Fig. S3 Digital photographs of aqueous dispersions of hybrid nanoparticles (a); in the presence of external magnet (b); after magnetic separation

Fig. S4 Chemosensing activity of probe Fe₃O₄@SiO₂@silatrane (L) towards different cationic species (20 equiv.) in acetonitrile

Fig. S5 IR spectra of 3g (a) and $3g + Cu^{2+}$ (b)

Fig. S6 B-H plot for 1:1 complexation between hybrid nanomaterial and Cu²⁺ at 300 nm

Fig. S7 Job's Plot for the determination of stoichiometry of complexes of the hybrid nanomaterial (1) with Cu^{2+}

Fig. S8 Variation of absorbance with increase in Cu (II) concentration

Fig. S9 Reaction-time profile of hybrid nanomaterial with Cu^{2+}

Fig. S10¹H NMR spectrum of 3a

Fig. S11 ¹³C NMR spectrum of 3a

Fig. S12 Mass spectrum of 3a

Fig. S13 ¹H NMR spectrum of 3b

Fig. S14¹³C NMR spectrum of 3b

Fig. S15 Mass spectrum of 3b

Fig. S16 ¹H NMR spectrum of 3c

Fig. S17 ¹³C NMR spectrum of 3c

Fig. S18 Mass spectrum of 3c

Fig. S19 ¹H NMR spectrum of 3d

Fig. S20¹³C NMR spectrum of 3d

Fig. S21 Mass spectrum of 3d

Fig. S22 ¹H NMR spectrum of 3e

Fig. S23 ¹³C NMR spectrum of 3e

Fig. S24 Mass spectrum of 3e

Fig. S25 ¹H NMR spectrum of 3f

Fig. S26¹³C NMR spectrum of 3f

Fig. S27 Mass spectrum of 3f

Fig. S28 ¹H NMR spectrum of 3g

Fig. S29¹³C NMR spectrum of 3g

Fig. S31 ¹H NMR spectrum of 3h

Fig. S32 ¹³C NMR spectrum of 3h

Fig. S33 Mass spectrum of 3h

Fig. S34 ¹H NMR spectrum of 3i

Fig. S35¹³C NMR spectrum of 3i

Fig. S36 Mass spectrum of 3i

Fig. S37 ¹H spectrum of 3j

Fig. S39 Mass spectrum of 3j

Fig. S40 ¹H spectrum of 3k

Fig. S41¹³C spectrum of 3k

Fig. S42 Mass spectrum of 3k

Compound	<i>3c</i>	<i>3f</i>
Formula	C ₂₂ H ₂₇ NO ₄ SSi	C ₁₇ H ₂₅ NO ₅ SSi
MW $[g \cdot mol^{-1}]$	429.59	383.53
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$
<i>a</i> [Å]	7.2068(2)	8.3421(6)
<i>b</i> [Å]	8.9671(3)	13.3327(0)
<i>c</i> [Å]	16.5006(6)	16.7969(1)
α [deg]	90	90
β [deg]	93.343(1)	90
γ [deg]	90	90
V [Å ³]	1064.52(6)	1868.2(2)
<i>T</i> [K]	170(2)	170(2)
Ζ	2	4
$ ho_{ m calc}[m g\cdot m cm^{-3}]$	1.340	1.364

Table T1 Selected crystal data and details on the structure determinations from single crystal data for compound 3c and 3f.

$\mu \ [\mathrm{mm}^{-1}]$	0.237	0.264
Min/max transmission	0.958/0.974	0.953/0.968
θ_{\max} [deg]	28.386	28.330
Measured reflections	18186	33751
Unique reflections	5321	4651
Reflections $[F_0 > 4\sigma(F_0)]$	5035	4370
Parameter	262	244
$R_{\rm int}$	0.0269	0.0251
$R_1[F_0 > 4\sigma(F_0)]$	0.0287	0.0373
wR_2 [all data]	0.0726	0.0994
GOF	1.037	1.017
$\Delta \rho_{max} / \Delta \rho_{min} \left[e^{\cdot} \text{\AA}^{-3} \right]$	0.288/-0.157	0.476/-0.411

Acid chloride	Thionyl
	chloride (in ml) ^a
1a	6.00
1b	4.33
1c	3.74
1d	4.37
1e	5.33
1f	4.77
1g	5.26
1 h	4.71
1 j	4.65
1 k	4.35

a: amount of thionyl chloride for each 1.00 g of corresponding carboxylic acid used