Supporting Information

Facile Synthesis of New *N*-Sulfonamidyl-4-thiazolidinone Derivatives and Biological Evaluation

Dnyaneshwar D. Subhedar,^a Mubarak H. Shaikh,^a Firoz A. Kalam Khan,^b Jaiprakash N. Sangshetti,^b Vijay M. Khedkar,^{c,d} Bapurao B. Shingate^{*a}

^aDepartment of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, India

^bDepartment of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad, 431 001, India

^cCombichem-Bioresource Centre, National Chemical Laboratory, Pune 411 008, India

^dSchool of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa

*E-mail:** <u>bapushingate@gmail.com</u> (B. B. Shingate) *Corresponding author. Tel.: (91)-240-2403311-12; Fax: (91)-240-2403113

Experimental procedure for 4-methylbenzenesulfonohydrazide:

To the stirred solution of 4-methylbenzene-1-sulfonyl chloride (1 mmol) in THF (20 mL), hydrazine hydrate (1.5 mmol) was added dropwise at 0 °C temperature. The progress of the reaction was monitored by Thin Layer Chromatography using *n*-hexane:ethyl acetate (8:2) solvent system. After completion of reaction, mixture was slowly poured into 100 mL of ice water. A solid was formed thereafter. The precipitate was separated by filtration and washed successively with water and crystallized in ethanol to give desired product.

^aReagents and conditions: (a) hydrazine, 0 °C, THF. **Scheme S1:** Synthesis of 4-methylbenzenesulfonohydrazide.

11clu (70)
68
79
83
90
90
_

 Table S1. Optimization of catalyst concentration:

Reaction conditions: 1a (1 mmol), 2 (1 mmol), 3 (1 mmol) at 80 °C for 1 hr. aIsolated yield.

Table S2. Recycling of the dried IL in the synthesis of 4-methyl-*N*-(4-oxo-2-phenylthiazolidin

 3-yl)benzenesulfonamide.^a

Entry	Run	Time (hr)	Yield (%) ^b
1	Ι	1	90
2	Π	1	90
3	III	1	87
4	IV	1	86

^aReaction conditions: 1a (1 mmol), 2 (1 mmol), 3 (1 mmol) and 20% [HDBU][HSO₄] at 80 °C. ^bIsolated yield.

Table S3. Recycling of the non-dried IL in the synthesis of 4-methyl-*N*-(4-oxo-2-phenylthiazolidin-3-yl)benzenesulfonamide.^a

Entry	Run	Time (hr)	Yield (%) ^b
1	Ι	1	70
2	Π	1	64
3	III	1	58
4	IV	1	52

***Reaction conditions**: **1a** (1 mmol), **2** (1 mmol), **3** (1 mmol) and 20% [HDBU][HSO₄] at 80 °C. ^bIsolated yield.

Figure S1. Structure of 4-methyl-*N*-(4-oxo-2-phenylthiazolidin-3-yl)benzenesulfonamide derivatives.

Com	Dooling	Pinding	Per-residue interaction	5	
Com	DUCKIIIg	Dinuing	van der Waals	Electrostatic	π-π
p. ID	score energy	(kcal/mol)	(kcal/mol)	stacking	
4d	-6.98	-43.42	 Heme(-3.85), Val461(-2.93), Met460(- 1.61), Thr459(-1.01), Cys422(-1.06), Val359(-1.35), Me358(-1.55), Leu356(- 3.53), Thr295(-1.20), Ala291(-2.35), Phe290(-2.86), Ala288(-1.21), Ala287(- 1.15), Met284(-1.13), Leu208(-1.22), Leu127(-1.32), Tyr116(-3.49), Phe110(- 2.04), Met106(-2.15) and Tyr103(-4.70) 	Heme(-16.96)	Phe110
4e	-7.04	-46.21	Heme(-2.24), Val461(-1.82), Met460(- 2.01), Cys422(-1.72), Val359(-1.18), Met358(-1.11), Leu356(-2.23), Thr295(- 1.06), Ala291(-2.38), Phe290(-2.37), Ala288(-1.72), Ala287(-1.29), Met284(- 1.17), Leu208(-1.32), Leu130(-0.93), Leu127(-1.57), Phe110(-1.51), Met106(- 1.55) and Tyr103(-1.94)	Heme(-21.78)	Tyr103
4g	-6.84	-41.49	 Heme(-2.81), Val461(-1.30), Met460(- 1.613), Cys422(-1.42), Val 359(-2.14), Met358(-1.17), Leu356(-1.07), Thr295(- 1.41), Ala291(-2.48), Phe290(-1.18), Ala288(-1.35), Ala287(-1.48), Met284(- 1.05), Leu208(-1.67), Leu130(-0.81), Leu127(-1.09), Tyr116(-2.73), Phe110(- 	Heme(12.57), Tyr116(-1.19)	Tyr116

Table S4. Results of the per-residue interaction analysis for the 4-thiazolidinone derivatives.

			1.55), Met106(-1.40) and Tyr103(-3.61)		
4h	-7.06	-48.81	Heme(-3.46), Val461(-2.12), Met460(- 2.02), Cys422(-1.89), Val359(-1.08), Met358(-1.12), Leu356(-1.78), Ala291(- 2.01), Phe290(-1.68), Ala288(-1.76), Met284(-1.20), Leu130(-0.95), Leu127(- 1.55), Tyr116(-1.68), Phe110(-1.73), Met106(-1.33) and Tyr103(-1.78)	Heme(-23.30)	Tyr103
4k	-7.02	-45.81	Heme(-2.67), Val461(-1.80), Met460(- 2.00), Cys422(-1.77), Val359(-1.02), Met358(-1.01), Leu356(-2.79), Thr295(- 1.33), Ala291(-2.40), Phe290(-1.46), Ala288(-1.79), Met284(-1.24), Leu208(- 1.00), Leu130(-0.89), Leu127(-1.62), Tyr116(-4.63), Phe110(-1.31), Met106(- 1.40) and Tyr103(-1.11)	Heme(-18.78)	Tyr103 and Tyr116

