Electronic Supplementary Information for

Switchable Two-Photon Imaging of RGD-Functionalized Polynorbornenes with Enhanced Cellular Uptake in Living Cells

Nan Xie,^a Ke Feng,^{*b} Bin Chen,^b Chen-Ho Tung^b and Li-Zhu Wu^{*b}

^aBeijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China. ^bKey Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.

Email: kefeng@mail.ipc.ac.cn; lzwu@mail.ipc.ac.cn.

Fig. S1 Plot of M_n vs the monomer-to-initiator ratios for the ROMP of NB-mPEG monomer.

Polymer ^a	[M]/[C]	M _n /kDa	M _w /kDa	PDI
PNB-mPEG ₂₅	25	18.4	20.4	1.11
PNB-mPEG ₅₀	50	32.1	36.2	1.13
PNB-mPEG ₇₅	75	55.3	65.7	1.19
PNB-mPEG ₁₀₀	100	72.1	85.3	1.18

 Table S1 GPC data for NB-mPEG homopolymers.

^aMeasured in THF at 298 K.

Fig. S2 Carbene ¹H NMR signals for Grubbs' third-generation initiator (top), and during the polymerizations of NB-mPEG monomer (bottom) in CDCl₃.

Fig. S3 UV-Vis absorption spectra upon UV @ 365 nm irradiation and normalized fluorescence spectra of nonfluorescent SP form (black) and fluorescent MC form (red) for PNB-RGDS₁₀-*co*-SP₁₀-*co*-mPEG₈₀ with the concentration of 0.082 mg·mL⁻¹ in 10 mM PBS buffer.

Fig. S5 ¹³C NMR spectrum for *N*-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Ser('Bu))-*exo*-bicyclo[2.2.1]-hept-5-ene-2-carboxamide in CDCl₃.

FK20

Fig. S6 MALDI-TOF MS spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Ser('Bu))-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide.

Fig. S8 ¹H NMR spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Val)-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide in CDCl₃.

Fig. S9¹³C NMR spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Val)-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide in CDCl₃.

FK19b

D:\DATA\Specs\Service\28Oct2009\FK19b\0 G11\1

Fig. S10 MALDI-TOF MS spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Val)-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide.

Fig. S11 ¹H NMR spectrum for PNB-pRGDV polymer in DMSO-*d*₆.

Fig. S12 ¹H NMR spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Phe)-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide in CDCl₃.

Fig. S13 ¹³C NMR spectrum for *N*-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Phe)-*exo*-bicyclo[2.2.1]-hept-5-ene-2-carboxamide in CDCl₃.

FK21

D:\DATA\Specs\Service\28Oct2009\FK21\0 C10\1

Fig. S14 MALDI-TOF MS spectrum for N-(Acp-Arg(Pbf)-Gly-Asp(O'Bu)-Phe)-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxamide.

Fig. S15 ¹H NMR spectrum for PNB-pRGDF polymer in DMSO-*d*₆.

Fig. S16 ¹H NMR spectrum for methoxypolyethylene-glycol-550-*exo*-bicyclo[2.2.1]-hept-5-ene-2-carboxylate in CDCl₃.

FK31c

Fig. S17 MALDI-TOF MS spectrum for methoxypolyethylene-glycol-550-exo-bicyclo[2.2.1]-hept-5-ene-2-carboxylate.

Fig. S18 ¹H NMR spectrum for PNB-mPEG550 in CDCl₃.

Fig. S19 ¹H NMR spectrum for PNB-pRGDS₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in DMSO-*d*₆.

Fig. S20 ¹H NMR spectrum for PNB-RGDS₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in DMSO-*d*₆.

Fig. S21 ¹H NMR spectrum for PNB-pRGDV₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in DMSO-*d*₆.

Fig. S22 ¹H NMR spectrum for PNB-RGDV₁₀-co-SP₁₀-co-mPEG₈₀ in DMSO-d₆.

Fig. S23 ¹H NMR spectrum for PNB-pRGDF₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in DMSO-*d*₆.

Fig. S24 ¹H NMR spectrum for PNB-RGDF₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in DMSO-*d*₆.

Fig. S25 ¹H NMR spectrum for PNB-NBoc₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in CDCl₃.

Fig. S26 ¹H NMR spectrum for PNB-NH2₁₀-*co*-SP₁₀-*co*-mPEG₈₀ in CDCl₃.