Boron templated synthesis of a BODIPY analogue from a phthalocyanine precursor

Laura A. Crandall, Hannah M. Rhoda, Victor N. Nemykin and Christopher J. Ziegler*

Department of Chemistry, University of Akron, Akron, Ohio 44312-3601 (USA) Department of Chemistry & Biochemistry University of Minnesota – Duluth 1039 University Drive, Duluth, MN 55812 (USA)

Supporting Information

Table of Contents

General Information	S2
Synthetic Procedures	S4
NMR Spectra of 1, 2 and 3	S6
MS Spectra of 1, 2 and 3	S9
Cyclic voltammetry	S12
X-ray crystallographic data tables	S13
Computational Data	S15
References	S34

General Information

All reagents and starting materials were purchased from commercial vendors and used without further purification. 1,3-diiminoisoindoline was synthesized according to a previously published procedure.^{S1} Chlorobenzene was stored over 3 Å molecular sieves. Column chromatography was performed on silica gel (Dynamic Adsorbents, Inc, 63-200 µm). Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received.

NMR spectra were recorded on 300 or 500 MHz spectrometers, Chemical shifts were given in ppm relative to residual solvent resonances (¹H, ¹³C NMR spectra). High resolution mass spectrometry experiments were performed on a Bruker MicroTOF-III instrument. Infrared spectra were collected on Thermo Scientific Nicolet iS5 which was equipped with an iD5 ATR.

X-ray intensity data were measured on a Bruker CCD-based diffractometer with dual Cu/Mo ImuS microfocus optics (Cu K α radiation, $\lambda = 1.54178$ Å, Mo K α radiation, $\lambda = 0.71073$ Å). Crystals were mounted on a cryoloop using Paratone oil and placed under a steam of nitrogen at 100 K (Oxford Cryosystems). The detector was placed at a distance of 5.00 cm from the crystal. The data were corrected for absorption with the SADABS program. The structures were refined using the Bruker SHELXTL Software Package (Version 6.1), and were solved using direct methods until the final anisotropic full-matrix, least squares refinement of F2 converged.

UV-Vis spectra were recorded on a Hitachi UV-Vis spectrophotometer (U-3010). Fluorescence excitation and emission data in solution were recorded on a Horiba Jobin-Yvon FluoroMax-4 fluorescence spectrophotometer using Coumarin 540 in methanol as a standard. All slit widths were held constant at 5 nm.

The quantum yields in solution were calculated using the following equation:

$$\Phi_x = \Phi_{st} \frac{Grad_x \eta_x^2}{Grad_{st} \eta_{st}^2}; \quad \eta_x = 1.324$$

 $\eta_{st} = 1.329$; $\Phi_{st} = 0.46$ and *Grad* the gradient from the plot of integrated fluorescence intensity vs absorbance^{S2}

Cyclic voltammograms were obtained using a standard three electrode cell and Electrochemical analyser BAS 100B from Bioanalytical systems and were recorded at 298 K under the following conditions: 10^{-3} M samples in dried acetonitrile in the presence of 0.1 M tetrabu-tylammonium hexafluorophosphate (TBAPF₆) as

a supporting electrolyte, Ag/Ag⁺ reference electrode, 0.79 mm² gold working electrode, and platinum wire auxiliary electrode. The working electrode was polished first with 3 μ m fine diamond, then 0.05 μ m alumina. The electrode was rinsed with ethanol and deionized water after each polishing and wiped with a Kimwipe. The non-aqueous Ag/Ag⁺ reference was prepared by soaking the silver wire in the degassed and dried THF solution of 5% Acetonitrile: 0.01M AgClO₄: 0.1M TBAPF₆. At a 0.10 V/s sweep rate, the Fc/Fc⁺ occurs at 0.060 ±0.005 V (Δ E_p = 119mV; i_{pa}/i_{pc} = 0.99).

All DFT calculations were conducted using the Gaussian 09 software.^{S3} All of the geometries were optimized at the DFT level using the TPSSh exchange-correlation functional and the 6-31G(d) basis set was used for all atoms.^{S4,S5} The PCM method was used to calculate the solvent effects for all the DFT and TDDFT calculations using DCM as a solvent.^{S6} The first 40 states were calculated for the TDDFT calculations. Molecular orbital contributions were compiled from single-point calculations using the QMForge program.^{S7}

Synthesis of 1 and 2:

 Ph_3B (0.097 g ,0.401 mmol) and 1,3-diiminoisoindoline (DII) (0.111 g, 0.765 mmol) were refluxed in dry chlorobenzene for 12 hours with the solution turning from clear to yellow-green. The chlorobenzene was removed, and the remaining solid purified via column chromatography on silica using CH_2Cl_2 as the eluting solvent.

1: Yield: 77 mg, 46%. λ_{max} = 333 nm, ϵ = 23,000, λ_{max} = 426 nm, ϵ = 6,700 M⁻¹cm⁻¹, excitation at 426 nm, λ_{em} = 482 nm, 512 nm Φ = 2.5×10⁻². IR: v C=N 1657 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ = 9.06 (s, 2H), 8.15-8.12 (m, 2H), 7.96-7.93 (m, 2H), 7.76-7.68 (m, 5H), 7.54-7.52 (m, 4H), δ = 7.36-7.26 (m, 6H). ¹³C NMR (300MHz, CDCl₃) δ = 184.54, 180.37, 169.38, 161.10, 136.10, 134.23, 133.68, 132.15, 132.36, 127.55, 123.99, 123.16. ESI MS calcd for C₂₈H₂₂BN₅ m/z 439.1963, found 439.1968.

2: Yield: 23 mg, 13.7%, λ_{max} = 340 nm, ε = 25,000, λ_{max} = 433 nm, ε = 5,300 M⁻¹cm⁻¹. Excitation at 433 nm, λ_{em} = 481 nm, 511 nm, Φ = 5.8×10⁻². IR: v C=O 1760 cm⁻¹, C=N 1659 cm⁻¹, ¹H NMR (300MHz, d6-DMSO) δ = 11.69(s, 1H), 8.17 (t, J=5.40 Hz, 2H), 8.08 (d, J=6.90 Hz, 1H), 7.90-7.77 (m, 5H), 7.52 (d, J = 7.5Hz, 4H), 7.28-7.06 (m, 6H). ¹³C NMR (300MHz, CDCl₃) δ = 134.86, 133.68, 133.77, 133.7, 132.31, 127.65, 126.93, 124.46, 124.38, 124.20. ESI MS calcd for C₂₈H₂₀BN₄O m/z 439.1725, found m/z 439.1730.

Synthesis of **3**:

 $PhB(OH)_2$ (0.241g, 1.98 mmol) and DII (0.274g, 1.89 mmol) were refluxed in chlorobenzene that had not been dried over molecular sieves for 72 hours. The chlorobenzene was removed and the residue was purified by column chromatography on silica, using CH_2Cl_2 as the elution solvent. This reaction also produces compounds

1 and **2**, but in lower yield. Yield: 3.0 mg, 0.36%, λ_{max} = 348 nm, ε = 25,000, λ_{max} = 440 nm, ε = 5,100 M⁻¹cm⁻¹. Excitation at 440 nm, λ_{em} = 492 nm, 515nm Φ = 5.6×10⁻³ IR: v C=O 1759 cm⁻¹, ¹H NMR (300MHz, CDCl₃) δ = 8.18-8.15 (m, 2H), 7.81-7.77 (m, 6H), 7.61 (dd, J= 4.50, 7.80, 4H), 7.31-7.19 (m, 6 H).). ¹³C NMR (500MHz, CDCl₃) δ = 164.39, 164.15, 164.08, 164.02, 134.46, 134.22, 134.12, 133.77, 133.53, 133.29, 133.26, 133.15, 132.65. ESI MS calcd for C₂₈H₁₈BN₃O₂ m/z 440.1565, found m/z 440.1570.

Figure S1: ¹H NMR (300 MHz) of 1 in CDCl₃. * represents residual CH_2Cl_2 and H_2O

Figure S2: ¹H NMR (300 MHz) of **2** in d6-DMSO, * represents H₂O, DMSO, and CH₂Cl₂ peaks

Figure S3:¹H NMR (300 MHz) of **3** in CDCl₃, * represents H_2O

Figure S4: High-resolution ESI mass spectra of 1

Figure S5: High-resolution ESI mass spectrum of 2

Figure S6: High-resolution ESI mass spectra of 3

Figure S7: Cyclic voltammongrams of 1, 2, and 3 in 0.1 M TBAPF₆/acetonitrile at 0.25 V/s and 10.0 μ A V⁻¹ versus AgCl.

Compound	E_1^c , V	E_1^a , V	E_2^0 , V (ΔE_p , mV)
1	-0.967	-0.506	-
2	-0.899	-0.670	-0.388 (70)
3	-0.955	-0.326	-

Table S1: Electrochemical data for 1, 2, and 3.

Compound	1	2	3
Empirical formula	C28 H20 B N5	C29 H21 B Cl2 N4 O	C29 H20 B Cl2 N3 O2
Formula weight	437.30	523.21	524.19
Temperature	100(2) K	100(2) K	100 (2) K
Wavelength	1.54718 Å	0.71073 Å	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P2(1)/c	P-1	P-1
Unit cell dimensions	a = 16.5717(10) Å	a = 8.8161(5)Å	a = 8.7931(11) Å
	b = 22.3081(13) Å	b = 10.6099(6) Å	b = 10.5963(13) Å
	c=11.7698(7) Å	c=13.5285(8) Å	c = 13.5308(18) Å
	α=90°	α=78.972(2)°	α= 78.771(5)°
	β= 99.701(4)°	β= 86.357(3)°	β= 86.503(6)°
	$\gamma = 90^{\circ}$	$\gamma = 84.254(4)^{\circ}$	$\gamma = 84.592(6)^{\circ}$
Volume	4288.9(4) \AA^3	1235.06(12) Å ³	1229.9(3) Å ³
Ζ	8	2	2
Density (calculated)	1.354 Mg/m ³	1.407 Mg/m ³	1.415 Mg/m ³
Absorption coefficient	0.641 mm ⁻¹	0.295 mm ⁻¹	0.298 mm ⁻¹
F(000)	1824	540	540
Crystal size	$0.27{\times}~0.18{\times}~0.11~\text{mm}^3$	$0.29\times0.18\times0.09~mm^3$	$0.27 \times 0.24 \times 0.21 \text{ mm}^3$
Theta range for data	2.70 to 62.99°	1.53 to 26.167°	1.99 to 26.376°
collection			
Index ranges	-17<=h<=19, -12<=k<=25,	-10<=h<=10, -13<=k<=12,	-10<=h<=10, -13<=k<=11,
	-13<=1<=13	-16<=1<=16	-15<=1<=16
Reflections collected	25267	14690	16216
Independent reflections	6842 [R(int) = 0.0337]	4687 [R(int) = 0.0833]	4790 [R(int) = 0.0355]
Completeness to theta	98.6 %	97.9 %	97.4 %
Absorption correction	SADABS	SADABS	SADABS
Max. and min. transmission	0.7527 and 0.6871	0.7452 and 0.5357	0.7454 and 0.6416
Refinement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares
	on F ²	on F2	on F2
Data / restraints /	6842 / 0 / 613	4687 / 12 / 374	4790 / 0 / 334
parameters Goodness-of-fit on F2 Final R indices [I>2sigma(I)]	0.962 R1 = 0.0403, wR2 = 0.0898	1.125 R1 = 0.0509, wR2 = 0.1268	1.080 R1 = 0.0572, wR2 = 0.1466
R indices (all data)	R1 = 0.0563, wR2 = 0.0993	R1 = 0.1833, w $R2 = 0.1401$	R1 = 0.0734, w $R2 = 0.1611$
Largest diff. peak and hole	0.514 and -0.392 e.Å ⁻³	0.286 and -0.418 e.Å ⁻³	1.033 and -0.910 e.Å-3

Table S2: Crystallographic data for 1, 2, and 3.

Compound	C=N	C=0	B-N
1	1.260(2)		1.582(2)
	1.264(2)		1.597(3)
2	1.251(4)	1.229(4)	1.581(4)
			1.592(4)
3		1.220(3)	1.594(3)
		1.244(3)	1.583(3)

Table S3: Selected bond lengths for 1, 2, and 3.

Figure S8: Frontier orbital diagrams for 1

Figure S9 : Orbital compositions for 1

Figure S10: Frontier orbital diagrams for 2

Figure S11: Orbital compositions for 2

Figure S12: Frontier orbital diagrams for **3**

Figure S13: Orbital compositions for **3**

Compound 1:

Excitation energies and oscillator strengths:

2.1886 eV 566.50 nm f=0.0013 <S**2>=0.000 Excited State 1: Singlet-A 114 ->115 0.70587 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1377.76055600Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 2.3155 eV 535.46 nm f=0.0063 <S**2>=0.000 113 ->115 0.70668 Excited State 3: Singlet-A 2.4129 eV 513.84 nm f=0.0061 <S**2>=0.000 -0.24869110 ->115 0.66094 112 ->115 2.4576 eV 504.49 nm f=0.0028 <S**2>=0.000 Excited State 4: Singlet-A 0.70679 111 ->115 Excited State 5: Singlet-A 2.5839 eV 479.83 nm f=0.0563 <S**2>=0.000 -0.13287 109 ->115 110 ->115 0.64819 112 ->115 0.23812 Excited State 6: 3.4241 eV 362.10 nm f=0.0190 <S**2>=0.000 Singlet-A 107 ->115 -0.47824108 ->115 0.51091 3.4830 eV 355.97 nm f=0.3320 <S**2>=0.000 Excited State 7: Singlet-A 0.67992 109 ->115 110 ->115 0.10400 3.5193 eV 352.29 nm f=0.0750 <S**2>=0.000 Excited State 8: Singlet-A 105 ->115 -0.18159 107 ->115 0.44829 108 ->115 0.43174 112 ->116 -0.11585 114 ->116 0.21337 Excited State 9: Singlet-A 3.5307 eV 351.16 nm f=0.0118 <S**2>=0.000 105 ->115 -0.32590107 ->115 -0.20458-0.16479108 ->115 0.56022 114 ->116 Excited State 10: Singlet-A 3.5608 eV 348.19 nm f=0.1834 <S**2>=0.000 106 ->115 0.69302 3.5761 eV 346.70 nm f=0.0009 <S**2>=0.000 Excited State 11: Singlet-A -0.11186 103 - > 115

105 ->115 114 ->116	0.58748 0.36947	
Excited State 104 ->115 113 ->116	12: Singlet-A 0.67697 0.18361	3.6525 eV 339.45 nm f=0.0043 <s**2>=0.000</s**2>
Excited State 104 ->115 113 ->116	13: Singlet-A -0.17556 0.67549	3.6672 eV 338.09 nm f=0.0001 <s**2>=0.000</s**2>
Excited State 110 ->116 112 ->116	14: Singlet-A -0.21953 0.66330	3.7590 eV 329.84 nm f=0.0112 <s**2>=0.000</s**2>
Excited State 111 ->116	15: Singlet-A 0.70377	3.8056 eV 325.80 nm f=0.0048 <s**2>=0.000</s**2>
Excited State 103 ->115 105 ->115	16: Singlet-A 0.68803 0.10948	3.8334 eV 323.43 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 107 ->115 109 ->116 110 ->116 112 ->116	17: Singlet-A 0.11381 -0.11086 0.64964 0.18776	3.9015 eV 317.79 nm f=0.0091 <s**2>=0.000</s**2>
Excited State 102 ->115	18: Singlet-A 0.69190	4.1730 eV 297.11 nm f=0.0908 <s**2>=0.000</s**2>
Excited State 114 ->117	19: Singlet-A 0.70579	4.2100 eV 294.50 nm f=0.0082 <s**2>=0.000</s**2>
Excited State 114 ->118	20: Singlet-A 0.70551	4.3068 eV 287.88 nm f=0.0018 <s**2>=0.000</s**2>
Excited State 113 ->117	21: Singlet-A 0.69967	4.3348 eV 286.02 nm f=0.0304 <s**2>=0.000</s**2>
Excited State 101 ->115 103 ->115	22: Singlet-A 0.69272 -0.10401	4.3637 eV 284.12 nm f=0.0001 <s**2>=0.000</s**2>
Excited State 112 ->117 113 ->118	23: Singlet-A 0.69066 -0.12585	4.3911 eV 282.35 nm f=0.0042 <s**2>=0.000</s**2>
Excited State 112 ->117 113 ->118	24: Singlet-A 0.13321 0.68535	4.4281 eV 280.00 nm f=0.0314 <s**2>=0.000</s**2>

Excited State 111 ->117	25: Singlet-A 0.70480	4.4636 eV 277.77 nm f=0.0001 <s**2>=0.000</s**2>
Excited State 112 ->118	26: Singlet-A 0.70124	4.4876 eV 276.28 nm f=0.0087 <s**2>=0.000</s**2>
Excited State 110 ->117	27: Singlet-A 0.69694	4.4886 eV 276.22 nm f=0.0488 <s**2>=0.000</s**2>
Excited State 111 ->118	28: Singlet-A 0.70633	4.5614 eV 271.81 nm f=0.0007 <s**2>=0.000</s**2>
Excited State 110 ->118	29: Singlet-A 0.69602	4.5905 eV 270.09 nm f=0.0282 <s**2>=0.000</s**2>
Excited State 100 ->115	30: Singlet-A 0.70364	4.6089 eV 269.01 nm f=0.0051 <s**2>=0.000</s**2>
Excited State 107 ->118 108 ->116 109 ->117	31: Singlet-A 0.11301 0.66516 -0.13300	4.6704 eV 265.47 nm f=0.0194 <s**2>=0.000</s**2>
Excited State 99 ->115	32: Singlet-A 0.70511	4.7106 eV 263.20 nm f=0.0003 <s**2>=0.000</s**2>
Excited State 98 ->115 109 ->116	33: Singlet-A -0.36726 0.57131	4.7598 eV 260.48 nm f=0.0465 <s**2>=0.000</s**2>
Excited State 98 ->115 106 ->116 107 ->117 109 ->118	34: Singlet-A 0.10283 0.63916 -0.14811 0.20674	4.8260 eV 256.91 nm f=0.0077 <s**2>=0.000</s**2>
Excited State 107 ->116 109 ->117	35: Singlet-A 0.65286 -0.19220	4.8576 eV 255.24 nm f=0.0029 <s**2>=0.000</s**2>
Excited State 105 ->116	36: Singlet-A 0.69921	4.9343 eV 251.27 nm f=0.0005 <s**2>=0.000</s**2>
Excited State 104 ->116	37: Singlet-A 0.69929	5.0066 eV 247.64 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 96 ->115 98 ->115 102 ->116 109 ->116 109 ->118	38: Singlet-A -0.23071 0.48713 -0.19908 0.30116 -0.12648	5.2363 eV 236.78 nm f=0.1729 <s**2>=0.000</s**2>

S-23

Excited State 39: Singlet-A 5.2454 eV 236.37 nm f=0.0034 <S**2>=0.000 103 ->116 0.69915

Excited State 40: Singlet-A 5.3267 eV 232.76 nm f=0.0012 <S**2>=0.000 97 ->115 0.70063

Compound **2**:

Excitation energies and oscillator strengths:

2.0167 eV 614.78 nm f=0.0024 <S**2>=0.000 Excited State 1: Singlet-A 114 ->115 0.70563 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1397.65034324Copying the excited state density for this state as the 1-particle RhoCI density. 2.1468 eV 577.53 nm f=0.0099 <S**2>=0.000 Excited State 2: Singlet-A 113 ->115 0.70632 Excited State 3: Singlet-A 2.2332 eV 555.18 nm f=0.0050 <S**2>=0.000 112 ->115 0.70239 2.2802 eV 543.74 nm f=0.0033 <S**2>=0.000 Excited State 4: Singlet-A 111 ->115 0.70481 2.4766 eV 500.63 nm f=0.0420 <S**2>=0.000 Excited State 5: Singlet-A 0.10529 109 ->115 0.69186 110 ->115 Excited State 6: 3.0242 eV 409.97 nm f=0.0001 <S**2>=0.000 Singlet-A 108 ->115 0.69577 3.2468 eV 381.87 nm f=0.0076 <S**2>=0.000 Excited State 7: Singlet-A 106 ->115 0.11591 107 ->115 0.57776 109 ->115 0.36026 Excited State 8: Singlet-A 3.3518 eV 369.90 nm f=0.1930 <S**2>=0.000 106 ->115 -0.10365 107 ->115 -0.34493 109 ->115 0.58074 Excited State 9: 3.3989 eV 364.77 nm f=0.3396 <S**2>=0.000 Singlet-A 106 ->115 0.67851 107 ->115 -0.15518Excited State 10: 3.4302 eV 361.45 nm f=0.0003 <S**2>=0.000 Singlet-A 104 ->115 0.12152 0.69102 114 ->116

Excited State 104 ->115 105 ->115 114 ->116	11: Singlet-A 0.67790 -0.11666 -0.12231	3.4983 eV	354.41 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 105 ->115 113 ->116	12: Singlet-A 0.53462 0.42695	3.5432 eV	349.92 nm	f=0.0387	<s**2>=0.000</s**2>
Excited State 105 ->115 113 ->116	13: Singlet-A -0.40258 0.55505	3.5604 eV	348.23 nm	f=0.0165	<s**2>=0.000</s**2>
Excited State 112 ->116	14: Singlet-A 0.70009	3.6400 eV	340.61 nm	f=0.0055	<s**2>=0.000</s**2>
Excited State 111 ->116	15: Singlet-A 0.70430	3.6884 eV	336.14 nm	f=0.0037	<s**2>=0.000</s**2>
Excited State 101 ->115 103 ->115	16: Singlet-A 0.12822 0.68690	3.7614 eV	329.62 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 110 ->116	17: Singlet-A 0.68868	3.8740 eV	320.04 nm	f=0.0090	<s**2>=0.000</s**2>
Excited State 102 ->115	18: Singlet-A 0.68288	4.1098 eV	301.68 nm	f=0.1287	<s**2>=0.000</s**2>
Excited State 114 ->117	19: Singlet-A 0.70125	4.1879 eV	296.06 nm	f=0.0068	<s**2>=0.000</s**2>
Excited State 101 ->115 103 ->115	20: Singlet-A 0.67745 -0.13691	4.2299 eV	293.11 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 114 ->118	21: Singlet-A 0.70428	4.3005 eV	288.30 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State 113 ->117	22: Singlet-A 0.70034	4.3103 eV	287.65 nm	f=0.0278	<s**2>=0.000</s**2>
Excited State 112 ->117	23: Singlet-A 0.70324	4.3862 eV	282.67 nm	f=0.0020	<s**2>=0.000</s**2>
Excited State 113 ->118	24: Singlet-A 0.69546	4.4189 eV	280.58 nm	f=0.0278	<s**2>=0.000</s**2>
Excited State 100 ->115 108 ->116 111 ->117	25: Singlet-A 0.56560 0.10151 -0.39725	4.4354 eV	279.53 nm	f=0.0103	<s**2>=0.000</s**2>

Excited State 100 ->115 111 ->117	26: Singlet-A 0.40796 0.56966	4.4368 eV 27	79.44 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 108 ->116 111 ->117	27: Singlet-A 0.67358 0.12013	4.4790 eV 27	76.82 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 112 ->118	28: Singlet-A 0.70548	4.4972 eV 27	75.69 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 99 ->115	29: Singlet-A 0.70240	4.5251 eV 27	73.99 nm	f=0.0002	<s**2>=0.000</s**2>
Excited State 111 ->118	30: Singlet-A 0.70268	4.5490 eV 27	72.55 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 109 ->116 110 ->117	31: Singlet-A 0.25498 0.63347	4.5634 eV 27	71.69 nm :	f=0.0480	<s**2>=0.000</s**2>
Excited State 107 ->116 109 ->116 110 ->117	32: Singlet-A 0.33536 0.50684 -0.28668	4.6110 eV 26	68.89 nm :	f=0.0467	<s**2>=0.000</s**2>
Excited State 105 ->116 106 ->116 110 ->118	33: Singlet-A 0.11467 -0.25789 0.63481	4.6767 eV 26	65.11 nm :	f=0.0289	<s**2>=0.000</s**2>
Excited State 98 ->115 106 ->116 107 ->116 109 ->116 109 ->118 110 ->118	34: Singlet-A 0.20863 -0.34104 0.47088 -0.23118 0.10694 -0.12351	4.7477 eV 26	61.15 nm :	f=0.0012	<s**2>=0.000</s**2>
Excited State 106 ->116 107 ->116 107 ->117 107 ->118 109 ->116 110 ->118	35: Singlet-A 0.48706 0.31647 0.19012 0.11765 -0.16256 0.23705	4.7599 eV 26	60.48 nm :	f=0.0566	<s**2>=0.000</s**2>
Excited State 98 ->115 104 ->116 105 ->116	36: Singlet-A -0.23673 -0.12608 0.59010	4.8838 eV 25	53.87 nm	f=0.0147	<s**2>=0.000</s**2>

109 ->117	-0.16011	
Excited State 104 ->116	37: Singlet-A 0.68793	4.9108 eV 252.47 nm f=0.0013 <s**2>=0.000</s**2>
Excited State 97 ->115	38: Singlet-A 0.69911	5.1348 eV 241.46 nm f=0.0010 <s**2>=0.000</s**2>
Excited State 96 ->115 98 ->115	39: Singlet-A 0.64890 -0.20621	5.1802 eV 239.34 nm f=0.0070 <s**2>=0.000</s**2>
Excited State 96 ->115 103 ->116 108 ->117 108 ->118	40: Singlet-A 0.10033 -0.35778 0.49859 -0.30695	5.1999 eV 238.44 nm f=0.0006 <s**2>=0.000</s**2>

Compound **3**:

Excitation ene	ergie	es and oscillator	strengths:			
Excited State	1:	Singlet-A	1.8475 eV	671.09 nm	f=0.0039	<s**2>=0.000</s**2>
114 ->115		0.70564				
This state for	opti	mization and/or	second-ord	er correction	1.	
Total Energy,	E(1	TD-HF/TD-KS)	= -1417.53	896925		
Copying the e	xcit	ed state density	for this state	e as the 1-pa	article Rho	CI density.
Excited State	2:	Singlet-A	1.9905 eV	622.89 nm	f=0.0172	<s**2>=0.000</s**2>
113 ->115		0.70604				
Excited State	3:	Singlet-A	2.0477 eV	605.49 nm	f=0.0047	<s**2>=0.000</s**2>
112 ->115		0.70601				
Excited State	4:	Singlet-A	2.1010 eV	590.12 nm	f=0.0020	<s**2>=0.000</s**2>
111 ->115		0.70605				
Excited State	5:	Singlet-A	2.3433 eV	529.09 nm	f=0.0282	<s**2>=0.000</s**2>
110 ->115		0.70116				
Excited State	6:	Singlet-A	2.8745 eV	431.33 nm	f=0.0000	<s**2>=0.000</s**2>
108 ->115		0.69480				
Excited State	7:	Singlet-A	2.9850 eV	415.35 nm	f=0.0004	<s**2>=0.000</s**2>
106 ->115		0.69844				
Excited State	8:	Singlet-A	3.0709 eV	403.73 nm	f=0.0009	<s**2>=0.000</s**2>
105 ->115		0.10532				
109 ->115		0.68809				
Excited State	9:	Singlet-A	3.2535 eV	381.07 nm	f=0.4560	<s**2>=0.000</s**2>
107 ->115		0.69493				
Excited State	10:	Singlet-A	3.3059 eV	375.04 nm	f=0.0000	<s**2>=0.000</s**2>
114 ->116		0.70105				
Excited State	11:	Singlet-A	3.3766 eV	367.19 nm	f=0.0206	<s**2>=0.000</s**2>
102 ->115		0.10969				
104 ->115		0.66309				
113 ->116		-0.18996				
Excited State	12:	Singlet-A	3.3995 eV	364.71 nm	f=0.0894	<s**2>=0.000</s**2>

105 ->115 0.68564 109 ->115 -0.10034 Excited State 13: Singlet-A 3.4341 eV 361.04 nm f=0.0095 <S**2>=0.000 104 ->115 0.17648 113 ->116 0.67951 Excited State 14: Singlet-A 3.4994 eV 354.30 nm f=0.0013 <S**2>=0.000 112 ->116 0.70400 Excited State 15: Singlet-A 3.5557 eV 348.70 nm f=0.0026 <S**2>=0.000 111 ->116 0.70592 3.6722 eV 337.63 nm f=0.0001 <S**2>=0.000 Excited State 16: Singlet-A 101 ->115 -0.12606 103 -> 1150.69003 3.8122 eV 325.23 nm f=0.0023 <S**2>=0.000 Excited State 17: Singlet-A 110 ->116 0.69767 Excited State 18: Singlet-A 4.0701 eV 304.62 nm f=0.1547 <S**2>=0.000 100 ->115 -0.11140102 - > 1150.67572 104 ->115 -0.10173 4.1150 eV 301.29 nm f=0.0002 <S**2>=0.000 Excited State 19: Singlet-A 99 ->115 0.20735 101 ->115 0.64953 103 -> 1150.14120 106 ->116 0.10635 Excited State 20: 4.1548 eV 298.41 nm f=0.0054 <S**2>=0.000 Singlet-A 114 ->117 0.70093 Excited State 21: Singlet-A 4.2695 eV 290.39 nm f=0.0297 <S**2>=0.000 100 ->115 0.69479 Excited State 22: Singlet-A 4.2847 eV 289.36 nm f=0.0310 <S**2>=0.000 113 ->117 0.68875 114 ->118 0.13547 Singlet-A Excited State 23: 4.2880 eV 289.14 nm f=0.0001 <S**2>=0.000 113 ->117 -0.13585 114 ->118 0.69050 Excited State 24: Singlet-A 4.3378 eV 285.82 nm f=0.0002 <S**2>=0.000 99 ->115 0.67097 101 ->115 -0.22034 Excited State 25: Singlet-A 4.3421 eV 285.54 nm f=0.0012 <S**2>=0.000 112 ->117 0.69973 Excited State 26: Singlet-A 4.3654 eV 284.02 nm f=0.0013 <S**2>=0.000 108 ->116 0.68408 Excited State 27: Singlet-A 4.3984 eV 281.88 nm f=0.0002 <S**2>=0.000 106 ->116 0.10121 111 ->117 0.69638 Excited State 28: Singlet-A 4.4130 eV 280.95 nm f=0.0330 <S**2>=0.000 113 ->118 0.70178 Excited State 29: Singlet-A 4.4634 eV 277.78 nm f=0.0000 <S**2>=0.000 106 ->116 0.67483 111 ->117 -0.10930Excited State 30: Singlet-A 4.4719 eV 277.25 nm f=0.0000 <S**2>=0.000 112 ->118 0.70456 Excited State 31: 4.5261 eV 273.93 nm f=0.0017 <S**2>=0.000 Singlet-A 109 ->116 0.52446

111 ->118	0.44683				
Excited State	32: Singlet-A	4.5315 eV	273.60 nm	f=0.0004	<s**2>=0.000</s**2>
109 ->116	-0.42464				
111 ->118	0.54722				
Excited State	33: Singlet-A	4.6233 eV	268.17 nm	f=0.0934	<s**2>=0.000</s**2>
105 ->116	0.17164				
109 ->116	0.10592				
110 ->117	0.67350				
Excited State	34: Singlet-A	4.6295 eV	267.81 nm	f=0.0001	<s**2>=0.000</s**2>
104 ->116	-0.19954				
107 ->116	0.59553				
109 ->117	0.11511				
110 ->118	0.24237				
Excited State	35: Singlet-A	4.7714 eV	259.85 nm	f=0.0382	<s**2>=0.000</s**2>
104 ->116	-0.16438				
107 ->116	-0.25849				
110 ->118	0.61594				
Excited State	36: Singlet-A	4.7889 eV	258.90 nm	f=0.0130	<s**2>=0.000</s**2>
104 ->117	-0.13547				
105 ->116	0.61337				
107 ->117	-0.13251				
109 ->118	0.17225				
110 ->117	-0.17241				
Excited State	37: Singlet-A	4.8567 eV	255.28 nm	f=0.0823	<s**2>=0.000</s**2>
96 ->115	-0.20666				
104 ->116	0.58585				
107 ->116	0.11887				
109 ->117	-0.14790				
110 ->118	0.21776				
Excited State	38: Singlet-A	4.9425 eV	250.85 nm	f=0.0005	<s**2>=0.000</s**2>
98 ->115	0.70417				
Excited State	39: Singlet-A	5.0116 eV	247.39 nm	f=0.0013	<s**2>=0.000</s**2>
96 ->115	-0.17890				
97 ->115	0.68172				
Excited State	40: Singlet-A	5.1705 eV	239.79 nm	f=0.0027	<s**2>=0.000</s**2>
95 ->115	-0.10690				
103 ->116	0.67016				
106 ->117	-0.13792				

Optimized Geometries:

Compound 1:

5	0	0.000119	0.884207	-0.000030
6	0	-2.609554	0.214281	-0.099481
6	0	-3.386482	-1.050462	-0.066376

6	0	-4.753994	-1.303725	-0.077989
1	0	-5.485748	-0.501586	-0.110757
6	0	-5.165922	-2.643828	-0.043589
1	0	-6.226831	-2.874652	-0.049572
6	0	-4.234703	-3.692796	-0.001515
1	0	-4.589063	-4.718631	0.023756
6	0	-2.858618	-3.434290	0.008496
1	0	-2.129598	-4.237215	0.040578
6	0	-2.461109	-2.100607	-0.023251
6	0	-1.129655	-1.490158	-0.021221
6	0	1.128948	-1.490577	0.021172
6	0	2.460148	-2.101525	0.023191
6	0	2.857194	-3.435345	-0.008550
1	0	2.127917	-4.238029	-0.040800
6	0	4.233183	-3.694354	0.001625
1	0	4.587144	-4.720326	-0.023705
6	0	5.164786	-2.645744	0.043908
1	0	6.225605	-2.876965	0.050016
6	0	4.753333	-1.305490	0.078372
1	0	5.485356	-0.503606	0.111366
6	0	3.385920	-1.051725	0.066562
6	0	2.609513	0.213333	0.099680
6	0	-0.075266	1.720921	1.392011
6	0	0.405735	1.167664	2.595111
1	0	0.870983	0.182823	2.581393
6	0	0.311870	1.841652	3.817270
1	0	0.699682	1.380691	4.723264
6	0	-0.278964	3.107446	3.872606
1	0	-0.353842	3.638852	4.818438
6	0	-0.774765	3.679949	2.697079
1	0	-1.242285	4.661991	2.726177
6	0	-0.673742	2.993035	1.482671
1	0	-1.081423	3.448121	0.585017
6	0	0.075962	1.720812	-1.392065
6	0	-0.405795	1.167886	-2.595068
1	0	-0.872018	0.183541	-2.581169
6	0	-0.311417	1.841639	-3.817289
1	0	-0.699798	1.380968	-4.723187
6	0	0.280710	3.106852	-3.872862
1	0	0.356013	3.638032	-4.818788
6	0	0.777181	3.679008	-2.697481
1	0	1.245661	4.660580	-2.726673
6	0	0.675620	2.992331	-1.482969
1	0	1.083838	3.447159	-0.585399
7	0	-1.233064	-0.147020	-0.055840
7	0	-0.000507	-2.203287	-0.000118
7	0	1.232827	-0.147527	0.056049
7	0	-2.977539	1.436702	-0.170570
1	0	-4.001975	1.484817	-0.195750
7	0	2.977825	1.435665	0.170489
1	0	4.002293	1.483561	0.195585

Compound 2: 5 0 -0.005447 -0.880668 -0.001799 6 0 -0.166390 -2.595990 0.084833 6 0 -3.352191 1.118488 0.056358 6 0 -4.715555 1.376251 0.078602 1 0 -5.4422490.571304 0.120726 6 0 -5.115836 2.722216 0.043710 1 0 -6.1737942.965590 0.058386 6 0 -4.173911 3.759294 -0.0094331 0 -4.5172954.788837 -0.0348376 0 -2.7969353.489613 -0.030049 1 -2.063669 4.288185 0 -0.070316 6 0 -2.413395 2.153958 0.002730 6 0 1.521823 -1.086663-0.0030836 1.467088 0 1.171447 -0.043571 6 0 2.511649 2.054339 -0.042923 6 0 2.931899 3.381363 -0.019453 1 4.197242 0 2.217139 0.000752 6 0 4.312555 3.615150 -0.021669 1 0 4.684747 4.634658 -0.002356 6 5.225285 2.549757 0 -0.047977 1 6.290015 2.761889 -0.047919 0 6 0 4.790576 1.216257 -0.074192 1 0 5.508270 0.401234 -0.094399 6 3.419292 0.987551 0 -0.070598 6 0 2.620384 -0.262482 -0.097928 6 0 -0.108476 -1.736983 -1.376858 6 0 0.408643 -1.238863 -2.589029 1 0 0.931254 -0.283182 -2.594422 6 0 0.278827 -1.933272 -3.796006 1 0.696912 -1.517198 0 -4.7101086 0 -0.388274 -3.161684 -3.826138 -0.492589 -3.707934 -4.760548 1 0 6 -0.922155 -3.677630 -2.641365 0 1 0 -1.448408 -4.629673 -2.651626 -0.782382 -2.972504 -1.441300 6 0 1 0 -1.214570 -3.386910 -0.534645 6 0.040732 -1.702447 0 1.398817 6 0 -0.443383 -1.128887 2.591007 1 0 -0.882282 -0.132369 2.566322 6 0 -0.383732 -1.797799 3.818372 1 0 -0.772513 -1.321821 4.715954 6 0.173817 -3.077499 0 3.888876 1 0 0.221421 -3.605009 4.838536 6 0 0.671576 -3.670373 2.723910 1 0 1.112086 -4.664233 2.765553 6 0 0.605035 -2.989229 1.504386 1 0 1.010276 -3.460701 0.613878 7 0 -1.2118650.174980 0.038391 7 0 0.050234 2.207242 -0.030743

7	0	1.247476	0.125646	-0.066953
7	0	2.959536	-1.492655	-0.155530
1	0	3.982591	-1.567268	-0.173878
8	0	-3.029349	-1.302302	0.143452
Compo	und 3	3:		
5	0	0.000000	-0.877049	0.000000
6	0	-2.609831	-0.214818	0.084710
6	0	-3.387294	1.056282	0.061572
6	0	-4.754314	1.290790	0.075832
1	0	-5.468077	0.473976	0.106537
6	0	-5.176374	2.630955	0.047834
1	0	-6.238252	2.856446	0.056467
6	0	-4 251851	3 683642	0.009168
1	Õ	-4 612028	4 707412	-0.011362
6	Õ	-2.870024	3 437224	-0.003496
1	Õ	-2 150012	4 248085	-0.032848
6	Õ	-2 465116	2 107870	0.022222
6	0	-1 128988	1 498776	0.019225
6	0	1 128990	1 498775	-0.019223
6	0	2 465110	2 107868	-0.017224
6	0	2.403117	2.107808	0.0022221
1	0	2.870028	<i>J</i> .4 <i>J</i> 7221 <i>A</i> 248083	0.003497
6	0	<i>2.130010</i> <i>4.251855</i>	3 683638	0.002850
1	0	4.251855	J.083038 4 707408	-0.009108
1	0	4.012033 5.176277	2 620050	0.011302
0	0	5.170577	2.030930	-0.04/855
1	0	0.238233	2.830440	-0.030470
0	0	4./34310	1.290/80	-0.0/3834
1	0	3.408078	0.4/39/1	-0.100341
0	0	3.38/290	1.030278	-0.0015/5
0	0	2.009831	-0.214820	-0.084/12
6	0	-0.0/2114	-1./19002	-1.3841/5
0	0	0.451625	-1.202334	-2.383293
l	0	0.950324	-0.234032	-2.5/9/03
6	0	0.355840	-1.893/21	-3./9/551
l	0	0.///912	-1.463635	-4./03108
6	0	-0.282695	-3.136320	-3.843348
l	0	-0.360413	-3.6/9/80	-4./81861
6	0	-0.821/21	-3.6/1801	-2.669221
l	0	-1.324356	-4.636161	-2.692301
6	0	-0.715184	-2.970915	-1.463879
l	0	-1.14/156	-3.401002	-0.564414
6	0	0.072112	-1.719662	1.384177
6	0	-0.451626	-1.202332	2.585296
1	0	-0.950324	-0.234029	2.579704
6	0	-0.355842	-1.893718	3.797552
1	0	-0.777914	-1.463631	4.703109
6	0	0.282691	-3.136319	3.843349
1	0	0.360407	-3.679778	4.781863
6	0	0.821715	-3.671801	2.669223
1	0	1.324348	-4.636162	2.692303
6	0	0.715180	-2.970915	1.463881

1	0	1.147150	-3.401003	0.564415
7	0	-1.226674	0.153896	0.049934
7	0	0.000001	2.212125	0.000001
7	0	1.226674	0.153895	-0.049934
8	0	-3.016677	-1.359265	0.131456
8	0	3.016677	-1.359268	-0.131459

References:

S1- Elvidge, J. A.; Linstead, R. P. J. Chem. Soc. 1952, 5000-5007.

S2- Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst. 1983, 108, 1067-1072.

S3- Gaussian 03, Revision C.02,. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

S4- J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett., 91 (2003) 146401.

S5- Perdew, J. P. Phys. Rev. B, 1986, 33, 8822-8824.

S6- (a) Becke, A. D. J. Chem. Phys., **1993**, *98*, 5648-5652; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, *37*, 785-789. (c) McLean, A. D.; Chandler, G. S. J. Chem. Phys. **1980**, *72*, 5639-5648.

S7- <u>QMForge</u>: Tenderholt, A. L. QMForge, version 2.1; Stanford University: Stanford, CA, 2011.